THE MISSING PIECE IN COMPLEX ANALYTICS: SCALABLE, LOW LATENCY MODEL SERVING AND MANAGEMENT WITH VELOX

Daniel Crankshaw, **Peter Bailis**, **Joseph Gonzalez**, Haoyuan Li, Zhao Zhang, Ali Ghodsi, Michael Franklin, and Michael I. Jordan *UC Berkeley AMPLab*

CIDR 2015

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

MODELINGTASK

Rating

MODELINGTASK

Songs

Data

Data -- Model

Data — Training — Model

BERKELEY DATA ANALYTICS STACK (BDAS)

Spark Streaming BlinkDB

Spark SQL

GraphX

MLBase

MLlib

Spark

Mesos

Hadoop Yarn

Tachyon

HDFS, S3, ...

CatID	Song	Score
1	16	2.1
	14	3.7
3	273	4.2
4	14	1.9

CatID	Song	Score
	16	2.1
	14	3.7
3	273	4.2
4	14	1.9

CatID	Song	Score
	16	2.1
I	14	3.7
3	273	4.2
4	14	1.9

Tachyon + HDFS

CatID	Song	Score
1	16	2.1
	14	3.7
3	273	4.2
4	14	1.9

Prediction Latency

Prediction Error

Online Retraining e.g.,

Prediction Latency

Lower is Better

Prediction Error

Lower is Better

Apache Web Server

Node.js App Server

Tachyon + HDFS

Apache Web Server

Node.js App Server

Tachyon + HDFS

Users

Users

Songs

Online Retraining

Prediction Latency

Prediction Error

Online Retraining

Prediction Latency

Full pre-materialization e.g.,

MySQL

Prediction Error

1. Predictions have either:

- 1. Predictions have either:
 - a. High latency, low staleness

- 1. Predictions have either:
 - a. High latency, low staleness
 - b. Low latency, high staleness

- 1. Predictions have either:
 - a. High latency, low staleness
 - b. Low latency, high staleness
- 2. Limited optimization of model semantics

- 1. Predictions have either:
 - a. High latency, low staleness
 - b. Low latency, high staleness
- 2. Limited optimization of model semantics
- 3. Ad-hoc lifecycle management

Talk Outline

- ML model management today
- Velox system architecture
- Split model family
- Prediction serving
- Model management
- Next directions

Talk Outline

- ML model management today
- Velox system architecture
- Split model family
- Prediction serving
- Model management
- Next directions

Online Retraining

Prediction Latency

Full pre-materialization e.g.,

MySQL

Online Retraining

Prediction Latency

I. Low latency and low error predictions

- I. Low latency and low error predictions
- 2. Cross-cutting model-specific optimizations

- I. Low latency and low error predictions
- 2. Cross-cutting model-specific optimizations
- 3. Unified system eases operation

Online Retraining

Prediction Latency

Full pre-materialization e.g.,

Online Retraining

Prediction Latency key idea:

split model into staleness insensitive and staleness sensitive

VELOX.

Full pre-materialization e.g.,

components

MySQL

Online Retraining e.g.,

key idea:

split model into

BATCH → staleness insensitive

and

staleness sensitive

components

Prediction Latency

VELOX.

Full pre-materialization e.g.,

MySQL

Prediction Latency

key idea:

split model into

BATCH → staleness insensitive

and

INCREMENTAL -> staleness sensitive

components

Full pre-materialization e.g.,

MySQL

BERKELEY DATA ANALYTICS STACK (BDAS)

Spark Streaming BlinkDB

Spark SQL

GraphX

MLbase

MLlib

Spark

Mesos

Hadoop Yarn

Tachyon

HDFS, S3, ...

Training

Mesos

Hadoop Yarn

Training

Management + Serving

Mesos

Hadoop Yarn

Training

Management + Serving

Velox

Mesos

Hadoop Yarn

Training

Management + Serving

Velox

Mesos

Hadoop Yarn

Training

Management + Serving

Velox

Model Manager

Mesos

Hadoop Yarn

Training

Management + Serving

Velox

Model Manager Prediction Service

Mesos

Hadoop Yarn

I. Implements model serving API

- I. Implements model serving API
- 2. Low latency; < 10ms response time

- I. Implements model serving API
- 2. Low latency; < 10ms response time
- 3. "Fuzzy" materialized view of model state

- 1. Implements model serving API
- 2. Low latency; < 10ms response time
- 3. "Fuzzy" materialized view of model state

MODEL MANAGER

- I. Implements model serving API
- 2. Low latency; < 10ms response time
- 3. "Fuzzy" materialized view of model state

MODEL MANAGER

I. Maintains models via online and batch retraining

- I. Implements model serving API
- 2. Low latency; < 10ms response time
- 3. "Fuzzy" materialized view of model state

MODEL MANAGER

- I. Maintains models via online and batch retraining
- 2. Stores model catalog, metadata, versioning

- I. Implements model serving API
- 2. Low latency; < 10ms response time
- 3. "Fuzzy" materialized view of model state

MODEL MANAGER

- I. Maintains models via online and batch retraining
- 2. Stores model catalog, metadata, versioning
- 3. Contains library of standard models + custom API

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

A Separate Model for Each User?

A Separate Model for Each User?

Computationally Inefficient

many complex models

A Separate Model for Each User?

Computationally Inefficient many complex models

Statistically Inefficient not enough data per user

Shared Basis Feature Model

Shared Basis Feature Model

Shared Basis Feature Model

Input (Song)

Personalized User Model

Trained for each user

Changes Quickly

Personalized

User Model

Shared Basis Feature Model

Input (Song)

Shared Basis Feature Model

Shared Basis Feature Model

Shared Basis Feature Model

Shared Basis Feature Models

Shared Basis Feature Models

Changes slowly

Shared Basis Feature Models

Changes slowly

Shared Basis Feature Models

Changes slowly

Shared Basis Feature Models

Changes slowly

Shared Basis Feature Models Personalized User Model Highly dynamic

Changes slowly

Shared Basis Feature Models

Personalized User Model

Highly dynamic

Changes slowly

Shared Basis Feature Models

Personalized User Model Highly dynamic

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

System Architecture

Training

Management + Serving

Velox

Model Manager Prediction Service

Mesos

Hadoop Yarn

Mesos

Tachyon HDFS, S3, ...

PREDICTION API

Simple point queries:

GET /velox/catify/predict?userid=22&song=27632

PREDICTION API

Simple point queries:

GET /velox/catify/predict?userid=22&song=27632

More complex ordering queries:

GET /velox/catify/predict_top_k?userid=22&k=100

def predict(u: UUID, x: Context)

$$w_u \cdot f(x; \theta)$$

def predict(u: UUID, x: Context)

Look up user weight

 $w_u \cdot f(x; \theta)$

def predict(u: UUID, x: Context)

Look up user weight

Primary key lookup

 $w_u \cdot f(x; \theta)$

def predict(u: UUID, x: Context)

Look up user weight

Primary key lookup Partition query by user: always local

$$w_u \cdot f(x; \theta)$$

def predict(u: UUID, x: Context)

Compute Features

$$w_u \cdot f(x; \theta)$$
user independent

def predict(u: UUID, x: Context)

Feature computation could be costly

Compute Features

$$w_u \cdot f(x; \theta)$$
user independent

def predict(u: UUID, x: Context)

Feature computation could be costly

Compute Features Cache features for reuse across users

$$w_u \cdot f(x; \theta)$$
user independent

FEATURE CACHING GAINS

Feature caching leads to order-of-magnitude reduction in latency.

Query predicate to pre-filter candidate set

By exploiting split model design we can leverage:

TOP-K QUERIES

Query predicate to pre-filter candidate set

By exploiting split model design we can leverage:

A. Shrivastava, P. Li. "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)." NIPS' 14 Best Paper

TOP-K QUERIES

Query predicate to pre-filter candidate set

By exploiting split model design we can leverage:

A. Shrivastava, P. Li. "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)." NIPS' 14 Best Paper

Y. Low and A. X. Zheng. "Fast Top-K Similarity Queries Via Matrix Compression." CIKM 2012

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

System Architecture

Training

Management + Serving

Velox

Model Manager Prediction Service

Mesos

Hadoop Yarn

Mesos

Tachyon HDFS, S3, ...

System Architecture

Training

Management + Serving

Velox

Model Manager Prediction Service

- Mesos
- I. Online and offline model training
- 2. Sample bias problem

Simple direct value feedback:

POST /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

POST /velox/catify/observe?userid=22&song=27&score=3.7

Online Learning

Continuously update user models in Velox

Simple direct value feedback:

POST /velox/catify/observe?userid=22&song=27&score=3.7

Online Learning

Continuously update user models in Velox

Offline Learning

Logged to DFS for feature learning in Spark

Simple direct value feedback:

POST /velox/catify/observe?userid=22&song=27&score=3.7

Online Learning

Continuously update user models in Velox

Offline Learning

Logged to DFS for feature learning in Spark

Evaluation

Continuously assess model performance

def observe(u: UUID, x: Context, y: Score)

$$w_u \cdot f(x; \theta)$$

def observe(u: UUID, x: Context, y: Score)

Update w_u with new training point

 $w_u \cdot f(x; \theta)$

def observe(u: UUID, x: Context, y: Score)

Update w_u with new training point

Stochastic gradient descent

$$w_u \cdot f(x; \theta)$$

def observe(u: UUID, x: Context, y: Score)

Update w_u with new training point

Stochastic gradient descent Incremental linear algebra

$$w_u \cdot f(x; \theta)$$

def retrain(trainingData: RDD)

$$w_u \cdot f(x; heta)$$
 Spark Based Training Algs.

Efficient batch training using Spark

def retrain(trainingData: RDD)

$$w_u \cdot f(x; heta)$$
 Spark Based Training Algs.

Efficient batch training using Spark

When do we retrain?

def retrain(trainingData: RDD)

$$w_u \cdot f(x; heta)$$
 Spark Based Training Algs.

Efficient batch training using Spark

When do we retrain?

Periodically

def retrain(trainingData: RDD)

$$w_u \cdot f(x; heta)$$
 Spark Based Training Algs.

Efficient batch training using Spark

When do we retrain?

Periodically

Trigger by the evaluation system

PREDICTION LATENCY WITH ONLINE TRAINING

Velox keeps models updated at low latency

Sample Bias: model affects the training data.

ALWAYS SERVETHE BEST SONG?

ALWAYS SERVETHE BEST SONG?

With prob. I- E serve the best predicted song

With prob. I- E serve the best predicted song

With prob. I- ϵ serve the best predicted song With prob. ϵ pick a **random** song

With prob. I- ϵ serve the best predicted song With prob. ϵ pick a **random** song

With prob. I- ϵ serve the best predicted song With prob. ϵ pick a **random** song

With prob. I- ϵ serve the best predicted song With prob. ϵ pick a **random** song

Epsilon Greedy

Predicted

Active Learning

Opportunity to explore new systems for this emerging analytics workload

Talk Outline

- ML model management today
- Velox system architecture
- Key idea: Split model family
- Prediction serving
- Model management
- Next directions

Talk Outline

- ML model management today
- Velox system architecture
- Split model family
- Prediction serving
- Model management
- Next directions

Going beyond the split model family

- Going beyond the split model family
 - · logical model pipeline language

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines
 - standard set of physical operators

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines
 - standard set of physical operators
- · Automatically choose split for online & offline training

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines
 - standard set of physical operators
- · Automatically choose split for online & offline training
 - · view maintenance and query optimization

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines
 - standard set of physical operators
- · Automatically choose split for online & offline training
 - · view maintenance and query optimization
- Ensure user privacy

- Going beyond the split model family
 - · logical model pipeline language
- More generic training pipelines
 - standard set of physical operators
- · Automatically choose split for online & offline training
 - · view maintenance and query optimization
- Ensure user privacy
 - Privacy-Preserving DBMS

Data

Data -- Model

Data

Model

The future of research in scalable learning systems will be in the integration of the learning lifecycle:

THE MISSING PIECE

Training

Management + Serving

Spark
Streaming
Spark
Squ
Spark
Squ
Spark
Squ
Spark
Spark
Spark
Spark
Spark

Velox

Model Manager Prediction Service

Mesos

Hadoop Yarn

Tachyon HDFS, S3, . . . Prediction Latency

key idea:

split model into

BATCH → staleness insensitive

and

INCREMENTAL -> staleness sensitive

components

Full pre-materialization e.g.,

MySQL

Prediction Error

The Velox system automatically maintains multiple models while providing low latency, scalable, and personalized predictions

The Velox system automatically maintains multiple models while providing low latency, scalable, and personalized predictions

Velox is coming soon as part of BDAS

The Velox system automatically maintains multiple models while providing low latency, scalable, and personalized predictions

Velox is coming soon as part of BDAS

https://amplab.cs.berkeley.edu/projects/velox/

QUESTIONS?