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a. High latency, low staleness
b. Low latency, high staleness

2. Limited optimization of model 
semantics

3. Ad-hoc lifecycle management

What’s wrong?
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PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

MODEL MANAGER

1. Maintains models via online and batch retraining
2. Stores model catalog, metadata, versioning
3. Contains library of standard models + custom API



Talk Outline

• ML model management today
• Velox system architecture 

• Key idea: Split model family
• Prediction serving
• Model management
• Next directions



Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family 

• Prediction serving
• Model management
• Next directions



PERSONALIZED MODELING



PERSONALIZED MODELING



PERSONALIZED MODELING

A Separate Model for Each User?



PERSONALIZED MODELING

Computationally Inefficient 
many complex models

A Separate Model for Each User?



PERSONALIZED MODELING

Statistically Inefficient 
not enough data per user

Computationally Inefficient 
many complex models

A Separate Model for Each User?



Input
(Song) Rating



Input
(Song) Rating



Input
(Song) Rating

Split



Rating

Split

Input
(Song)



PERSONALIZED MODELING

Input
(Song)

Personalized
User Model



PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model Personalized
User Model



PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model
Trained across users  

Changes Slowly

Personalized
User Model



PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model
Trained across users  

Changes Slowly

Trained for each user
Changes Quickly

Personalized
User Model



Input
(Song)

Shared Basis Feature Model Personalized
User Model

SPLIT MODEL FORMULATION



Input
(Song)

Shared Basis Feature Model Personalized
User Model

Input
(Song)

SPLIT MODEL FORMULATION



Input
(Song)

Shared Basis Feature Model Personalized
User Model

Meow

Input
(Song)

SPLIT MODEL FORMULATION



Input
(Song)

Personalized
User Model

Meow

Input
(Song)

Terrible

Shared Basis Feature Model

SPLIT MODEL FORMULATION



MATHEMATICAL FORMULATION

Input
(Song)



MATHEMATICAL FORMULATION

Input
(Song)

x



Shared Basis
Feature Models

MATHEMATICAL FORMULATION

Input
(Song)

x



Shared Basis
Feature Models

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x



Shared Basis
Feature Models

Changes 
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x



Shared Basis
Feature Models

Personalized
User Model

Changes 
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x



Shared Basis
Feature Models

Personalized
User Model

Changes 
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x



Shared Basis
Feature Models

Personalized
User Model

Changes 
slowly

Highly 
dynamic

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x



Shared Basis
Feature Models

Personalized
User Model

Changes 
slowly

Highly 
dynamic

= Rating

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x



Shared Basis
Feature Models

Personalized
User Model

Changes 
slowly

Highly 
dynamic

= Rating

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x

Terrible



Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family 

• Prediction serving
• Model management
• Next directions



Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family
• Prediction serving 

• Model management
• Next directions



     Mesos                                      Mesos

HDFS, S3, … 
Tachyon

Hadoop Yarn

Spark 
Straming Shark

SQL

Graph 
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

System Architecture

Model
Manager

Prediction
Service



PREDICTION API

GET	
  /velox/catify/predict?userid=22&song=27632
Simple point queries:



PREDICTION API

GET	
  /velox/catify/predict_top_k?userid=22&k=100

GET	
  /velox/catify/predict?userid=22&song=27632
Simple point queries:

More complex ordering queries:



PREDICTIONS

def	
  predict(	
  u:	
  UUID,	
  x:	
  Context	
  )

wu · f(x; ✓)



Look up user 
weight

PREDICTIONS

def	
  predict(	
  u:	
  UUID,	
  x:	
  Context	
  )

wu · f(x; ✓)



Look up user 
weight

PREDICTIONS

def	
  predict(	
  u:	
  UUID,	
  x:	
  Context	
  )

wu · f(x; ✓)

Primary key lookup



Look up user 
weight

PREDICTIONS

def	
  predict(	
  u:	
  UUID,	
  x:	
  Context	
  )

wu · f(x; ✓)

Primary key lookup
Partition query by user : always local
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PREDICTIONS

def	
  predict(	
  u:	
  UUID,	
  x:	
  Context	
  )

wu · f(x; ✓)

Feature computation  
could be costly

user independent

}
Cache features for
reuse across users
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Feature caching leads to order-of-magnitude  
reduction in latency.

Without Caching

Caching Enabled
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A. Shrivastava, P. Li. “Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product 
Search (MIPS).”  NIPS’14 Best Paper

Y. Low and A. X. Zheng. “Fast Top-K Similarity Queries Via Matrix Compression.” CIKM 2012
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FEEDBACK API

POST	
  /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

Continuously update  
user models in Velox

Online Learning Offline Learning
Logged to DFS for

feature learning in Spark

Evaluation
Continuously assess 
model performance
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ONLINE LEARNING

def	
  observe(u:	
  UUID,	
  x:	
  Context,	
  y:	
  Score)

wu · f(x; ✓)

Stochastic gradient descent
Incremental linear algebra
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OFFLINE LEARNING
def	
  retrain(trainingData:	
  RDD)

Spark Based
Training Algs.

wu · f(x; ✓)

Periodically Trigger by the
evaluation system

When do we retrain?

Efficient batch training using Spark
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Sample Bias: model affects the training data.
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With prob. 1- ϵ serve the best predicted song
With prob.  ϵ pick a random song

Epsilon Greedy

Active Learning 
Opportunity to explore new systems for 

this emerging analytics workload
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• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

• Automatically choose split for online & offline training
• view maintenance and query optimization  

• Ensure user privacy
• Privacy-Preserving DBMS 
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The future of research in scalable learning systems will be in the 
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