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a. High latency, low staleness

b. Low latency, high staleness

2. Limited optimization of model
semantics

3. Ad-hoc lifecycle management
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mplements model serving API

_ow latency; < |0ms response time

“Fuzzy’’ materialized view of model state

MODEL MANAGER

Maintains models via online and batch retraining

Stores model catalog, metadata, versioning

Contains library of standard models + custom AP
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More complex ordering queries:
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By exploiting split model design we can leverage:

A. Shrivastava, R Li. "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product
Search (MIPS).” NIPS'14 Best Paper

Y. Low and A. X. Zheng. “Fast Top-K Similarity Queries Via Matrix Compression.” CIKM 2012
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Online Learning Offline Learning

Continuously update L ogged to DES [of
user models In Velox feature learning in Spark

Evaluation

Continuously assess
model performance
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def retrain(trainingData: RDD)
. Spark Based
Wy - fla;0) s

Efficient batch training using Spark

VWhen do we retrain!?

Trigger by the

E uay evaluation system
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With prob. |- € serve the best predicted song
With prob. € pick a random song

Epsilon Greedy

Active Learning

Opportunity to explore new systems for
this emerging analytics workloaad
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» Going beyond the split model family
* logical model pipeline language

» More generic training pipelines
- standard set of physical operators

» Automatically choose split for online & offline training
* view maintenance and query optimization

* Ensure user privacy
* Privacy-Preserving DBMS
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