
THE MISSING PIECE IN COMPLEX ANALYTICS:
SCALABLE, LOW LATENCY MODEL SERVING

AND MANAGEMENT WITH VELOX

Daniel Crankshaw, Peter Bailis, Joseph Gonzalez, Haoyuan Li,
 Zhao Zhang, Ali Ghodsi, Michael Franklin, and Michael I. Jordan

UC Berkeley AMPLab

CIDR 2015

Talk Outline

• ML model management today

• Velox system architecture
• Key idea: Split model family
• Prediction serving
• Model management
• Next directions

Catify: Music for Cats

MODELING TASK

Rating

Songs

MODELING TASK

Ratings

Songs

Prediction

Data

Data Model

Data ModelTraining

BERKELEY DATA  
ANALYTICS STACK (BDAS)

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLBase

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Catify: Music for Cats

Catify: Music for Cats
CatID Song Score

1 16 2.1

1 14 3.7

3 273 4.2

4 14 1.9

Catify: Music for Cats

Pipeline

CatID Song Score

1 16 2.1

1 14 3.7

3 273 4.2

4 14 1.9

Catify: Music for Cats

Tachyon + HDFS

Pipeline

CatID Song Score

1 16 2.1

1 14 3.7

3 273 4.2

4 14 1.9

Catify: Music for Cats

Tachyon + HDFS

Pipeline

CatID Song Score

1 16 2.1

1 14 3.7

3 273 4.2

4 14 1.9

Prediction
Latency

Prediction Error

Prediction
Latency

Prediction Error
Lower is
Better

Prediction
Latency

Prediction Error
Lower is
Better

Lower is
Better

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Lower is
Better

Lower is
Better

Pipeline

Tachyon + HDFS

Catify: Music for Cats

Pipeline

Tachyon + HDFS

Catify: Music for Cats

Node.js App Server

Apache Web Server

MySQL

Pipeline

Tachyon + HDFS

Catify: Music for Cats

Node.js App Server

Apache Web Server

MySQL

Catify: Music for Cats

Songs

Users

Songs

Users

O(users * songs)

Catify: Music for Cats

Pipeline

Tachyon + HDFS

Node.js App Server

NGINX

MySQL

Catify: Music for Cats

Pipeline

Tachyon + HDFS

Node.js App Server

NGINX

MySQL

New Model

Catify: Music for Cats

Pipeline

Tachyon + HDFS

Node.js App Server

NGINX

MySQL

Training Data

New Model

Catify: Music for Cats

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g.,

What’s wrong?

1. Predictions have either :

What’s wrong?

1. Predictions have either :
a. High latency, low staleness

What’s wrong?

1. Predictions have either :
a. High latency, low staleness
b. Low latency, high staleness

What’s wrong?

1. Predictions have either :
a. High latency, low staleness
b. Low latency, high staleness

2. Limited optimization of model
semantics

What’s wrong?

1. Predictions have either :
a. High latency, low staleness
b. Low latency, high staleness

2. Limited optimization of model
semantics

3. Ad-hoc lifecycle management

What’s wrong?

Talk Outline

• ML model management today

• Velox system architecture
• Split model family
• Prediction serving
• Model management
• Next directions

Talk Outline

• ML model management today
• Velox system architecture

• Split model family
• Prediction serving
• Model management
• Next directions

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g.,

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g.,

VELOX

VELOX GOALS

VELOX GOALS
1. Low latency and low error

predictions

VELOX GOALS
1. Low latency and low error

predictions
2. Cross-cutting model-specific

optimizations

VELOX GOALS
1. Low latency and low error

predictions
2. Cross-cutting model-specific

optimizations
3. Unified system eases operation

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g., VELOX

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g., VELOX

key idea:
split model into
staleness insensitive
and
staleness sensitive
components

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g., VELOX

key idea:
split model into
staleness insensitive
and
staleness sensitive
components

BATCH

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g., VELOX

key idea:
split model into
staleness insensitive
and
staleness sensitive
components

INCREMENTAL

BATCH

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLbase

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

BERKELEY DATA  
ANALYTICS STACK (BDAS)

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Training

THE MISSING PIECE

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Training Management + Serving

THE MISSING PIECE

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

THE MISSING PIECE

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

THE MISSING PIECE

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

THE MISSING PIECE

Model
Manager

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

THE MISSING PIECE

Model
Manager

Prediction
Service

PREDICTION SERVICE

PREDICTION SERVICE

1. Implements model serving API

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

MODEL MANAGER

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

MODEL MANAGER

1. Maintains models via online and batch retraining

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

MODEL MANAGER

1. Maintains models via online and batch retraining
2. Stores model catalog, metadata, versioning

PREDICTION SERVICE

1. Implements model serving API
2. Low latency; < 10ms response time
3. “Fuzzy” materialized view of model state

MODEL MANAGER

1. Maintains models via online and batch retraining
2. Stores model catalog, metadata, versioning
3. Contains library of standard models + custom API

Talk Outline

• ML model management today
• Velox system architecture

• Key idea: Split model family
• Prediction serving
• Model management
• Next directions

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family

• Prediction serving
• Model management
• Next directions

PERSONALIZED MODELING

PERSONALIZED MODELING

PERSONALIZED MODELING

A Separate Model for Each User?

PERSONALIZED MODELING

Computationally Inefficient
many complex models

A Separate Model for Each User?

PERSONALIZED MODELING

Statistically Inefficient
not enough data per user

Computationally Inefficient
many complex models

A Separate Model for Each User?

Input
(Song) Rating

Input
(Song) Rating

Input
(Song) Rating

Split

Rating

Split

Input
(Song)

PERSONALIZED MODELING

Input
(Song)

Personalized
User Model

PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model Personalized
User Model

PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model
Trained across users  

Changes Slowly

Personalized
User Model

PERSONALIZED MODELING

Input
(Song)

Shared Basis Feature Model
Trained across users  

Changes Slowly

Trained for each user
Changes Quickly

Personalized
User Model

Input
(Song)

Shared Basis Feature Model Personalized
User Model

SPLIT MODEL FORMULATION

Input
(Song)

Shared Basis Feature Model Personalized
User Model

Input
(Song)

SPLIT MODEL FORMULATION

Input
(Song)

Shared Basis Feature Model Personalized
User Model

Meow

Input
(Song)

SPLIT MODEL FORMULATION

Input
(Song)

Personalized
User Model

Meow

Input
(Song)

Terrible

Shared Basis Feature Model

SPLIT MODEL FORMULATION

MATHEMATICAL FORMULATION

Input
(Song)

MATHEMATICAL FORMULATION

Input
(Song)

x

Shared Basis
Feature Models

MATHEMATICAL FORMULATION

Input
(Song)

x

Shared Basis
Feature Models

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x

Shared Basis
Feature Models

Changes
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x

Shared Basis
Feature Models

Personalized
User Model

Changes
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓)
x

Shared Basis
Feature Models

Personalized
User Model

Changes
slowly

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x

Shared Basis
Feature Models

Personalized
User Model

Changes
slowly

Highly
dynamic

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x

Shared Basis
Feature Models

Personalized
User Model

Changes
slowly

Highly
dynamic

= Rating

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x

Shared Basis
Feature Models

Personalized
User Model

Changes
slowly

Highly
dynamic

= Rating

MATHEMATICAL FORMULATION

Input
(Song)

f(x; ✓) ·wu

x

Terrible

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family

• Prediction serving
• Model management
• Next directions

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family
• Prediction serving

• Model management
• Next directions

 Mesos Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Straming Shark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

System Architecture

Model
Manager

Prediction
Service

PREDICTION API

GET	
 /velox/catify/predict?userid=22&song=27632
Simple point queries:

PREDICTION API

GET	
 /velox/catify/predict_top_k?userid=22&k=100

GET	
 /velox/catify/predict?userid=22&song=27632
Simple point queries:

More complex ordering queries:

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Look up user
weight

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Look up user
weight

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Primary key lookup

Look up user
weight

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Primary key lookup
Partition query by user : always local

Compute
Features

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)
user independent

}

Compute
Features

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Feature computation  
could be costly

user independent

}

Compute
Features

PREDICTIONS

def	
 predict(
 u:	
 UUID,	
 x:	
 Context	
)

wu · f(x; ✓)

Feature computation  
could be costly

user independent

}
Cache features for
reuse across users

FEATURE CACHING GAINS

Feature caching leads to order-of-magnitude  
reduction in latency.

Without Caching

Caching Enabled

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords Candidate
Songs

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords Candidate
Songs

Score and
rank all
candidates

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords Candidate
Songs

By exploiting split model design we can leverage:

Score and
rank all
candidates

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords Candidate
Songs

By exploiting split model design we can leverage:

Score and
rank all
candidates

A. Shrivastava, P. Li. “Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product
Search (MIPS).” NIPS’14 Best Paper

http://nips.cc/Conferences/2014/Program/speaker-info.php?ID=9123
http://nips.cc/Conferences/2014/Program/speaker-info.php?ID=3325

TOP-K QUERIES
Query predicate to pre-filter candidate set

All Songs Playlist Keywords Candidate
Songs

By exploiting split model design we can leverage:

Score and
rank all
candidates

A. Shrivastava, P. Li. “Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product
Search (MIPS).” NIPS’14 Best Paper

Y. Low and A. X. Zheng. “Fast Top-K Similarity Queries Via Matrix Compression.” CIKM 2012

http://nips.cc/Conferences/2014/Program/speaker-info.php?ID=9123
http://nips.cc/Conferences/2014/Program/speaker-info.php?ID=3325

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family
• Prediction serving

• Model management
• Next directions

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family
• Prediction serving
• Model management

• Next directions

 Mesos Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Straming Shark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

System Architecture

Model
Manager

Prediction
Service

 Mesos Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Straming Shark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

System Architecture

Model
Manager

Prediction
Service

1. Online and offline model training
2. Sample bias problem

FEEDBACK API

POST	
 /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

FEEDBACK API

POST	
 /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

Continuously update  
user models in Velox

Online Learning

FEEDBACK API

POST	
 /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

Continuously update  
user models in Velox

Online Learning Offline Learning
Logged to DFS for

feature learning in Spark

FEEDBACK API

POST	
 /velox/catify/observe?userid=22&song=27&score=3.7

Simple direct value feedback:

Continuously update  
user models in Velox

Online Learning Offline Learning
Logged to DFS for

feature learning in Spark

Evaluation
Continuously assess 
model performance

ONLINE LEARNING

def	
 observe(u:	
 UUID,	
 x:	
 Context,	
 y:	
 Score)

wu · f(x; ✓)

Update wu with
new training point

ONLINE LEARNING

def	
 observe(u:	
 UUID,	
 x:	
 Context,	
 y:	
 Score)

wu · f(x; ✓)

Update wu with
new training point

ONLINE LEARNING

def	
 observe(u:	
 UUID,	
 x:	
 Context,	
 y:	
 Score)

wu · f(x; ✓)

Stochastic gradient descent

Update wu with
new training point

ONLINE LEARNING

def	
 observe(u:	
 UUID,	
 x:	
 Context,	
 y:	
 Score)

wu · f(x; ✓)

Stochastic gradient descent
Incremental linear algebra

OFFLINE LEARNING
def	
 retrain(trainingData:	
 RDD)

Spark Based
Training Algs.

wu · f(x; ✓)
Efficient batch training using Spark

OFFLINE LEARNING
def	
 retrain(trainingData:	
 RDD)

Spark Based
Training Algs.

wu · f(x; ✓)

When do we retrain?

Efficient batch training using Spark

OFFLINE LEARNING
def	
 retrain(trainingData:	
 RDD)

Spark Based
Training Algs.

wu · f(x; ✓)

Periodically

When do we retrain?

Efficient batch training using Spark

OFFLINE LEARNING
def	
 retrain(trainingData:	
 RDD)

Spark Based
Training Algs.

wu · f(x; ✓)

Periodically Trigger by the
evaluation system

When do we retrain?

Efficient batch training using Spark

PREDICTION LATENCY
WITH ONLINE TRAINING

Velox keeps models updated at low latency

Velox

Spark

Data Model

Data Model

Sample Bias: model affects the training data.

ALWAYS SERVE THE BEST SONG?

Songs

Predicted
Rating

ALWAYS SERVE THE BEST SONG?

Songs

Predicted
Rating

VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song

VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song

 VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song
With prob. ϵ pick a random song

 VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song
With prob. ϵ pick a random song

 VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song
With prob. ϵ pick a random song

Epsilon Greedy

 VELOX SOLUTION

Predicted
Rating

Songs

With prob. 1- ϵ serve the best predicted song
With prob. ϵ pick a random song

Epsilon Greedy

Active Learning
Opportunity to explore new systems for

this emerging analytics workload

Talk Outline

• ML model management today
• Velox system architecture
• Key idea: Split model family
• Prediction serving
• Model management

• Next directions

Talk Outline

• ML model management today
• Velox system architecture
• Split model family
• Prediction serving
• Model management
• Next directions

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

• Automatically choose split for online & offline training

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

• Automatically choose split for online & offline training
• view maintenance and query optimization  

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

• Automatically choose split for online & offline training
• view maintenance and query optimization  

• Ensure user privacy

OPEN CHALLENGES  
FOR DATABASE SYSTEMS

• Going beyond the split model family
• logical model pipeline language  

• More generic training pipelines
• standard set of physical operators  

• Automatically choose split for online & offline training
• view maintenance and query optimization  

• Ensure user privacy
• Privacy-Preserving DBMS

Data

Data Model

Data

Model

Training

Data

ModelPredictions
Serving

Training

Data

ModelPredictions
Serving

TrainingFee
db

ack

The future of research in scalable learning systems will be in the
integration of the learning lifecycle:

Data

ModelPredictions
Serving

TrainingFee
db

ack

 Mesos

HDFS, S3, …
Tachyon

Hadoop Yarn

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase

Spark

Velox
Training Management + Serving

THE MISSING PIECE

Model
Manager

Prediction
Service

Prediction
Latency

Prediction Error

Online Retraining
 e.g.,

Full pre-materialization
 e.g., VELOX

key idea:
split model into
staleness insensitive
and
staleness sensitive
components

INCREMENTAL

BATCH

SUMMARY

Today: model training and serving relies on ad-hoc,
manual processes spread across multiple systems

SUMMARY

https://amplab.cs.berkeley.edu/projects/velox/

Today: model training and serving relies on ad-hoc,
manual processes spread across multiple systems

The Velox system automatically maintains multiple
models while providing low latency, scalable, and
personalized predictions

SUMMARY

https://amplab.cs.berkeley.edu/projects/velox/

Today: model training and serving relies on ad-hoc,
manual processes spread across multiple systems

The Velox system automatically maintains multiple
models while providing low latency, scalable, and
personalized predictions

Velox is coming soon as part of BDAS

SUMMARY

https://amplab.cs.berkeley.edu/projects/velox/

Today: model training and serving relies on ad-hoc,
manual processes spread across multiple systems

The Velox system automatically maintains multiple
models while providing low latency, scalable, and
personalized predictions

Velox is coming soon as part of BDAS

https://amplab.cs.berkeley.edu/projects/velox/

SUMMARY

https://amplab.cs.berkeley.edu/projects/velox/

QUESTIONS?

