Linear Regression and the
Bias Variance Tradeoff

Guest Lecturer
Joseph E. Gonzalez

slides available here: http://tinyurl.com/reglecture




Simple Linear Regression

Response
Variable

Linear Model: Y =mX —+ b

Slope Intercept (bias)

Covariate



Motivation

One of the most widely used techniques

Fundamental to many larger models
— Generalized Linear Models
— Collaborative filtering

Easy to interpret
Efficient to solve



Multiple Linear Regression




The Regression Model

* For a single data point (x,y):

Independent Variable Response Variable

(Vector) (Scalar)

Observe:
(Condition)

xr € RP y € R

* Joint Probability:

p(z,y) = p(x)p(y|x)

Discriminative
Model







The Linear Model

Vector of
Parameters Vector of

,—‘—:_Ef\variates
Scalar y — QT:I; _I_ € Real Value + b
I ' j

Response Noise

Noise Model:
e ~ N(0,0%)

p
Linear Comblna.mon § (9@337,
of Covariates
1=1

What about bias/intercept term?
Define: z,41 =1

Then redefine p := p+1 for notational simplicity



Conditional Likelihood p(y|x)

e Conditioned on x:
Constant

Normal Distribution

Y — 9T +|e~ N(0,0?)

Mean Variance

 Conditional distribution of Y:
Y ~ N(0'z,0?)

plyle) = — eXP< @—9%)2)

o\ 2T 2074




Parameters and Random Variables

Parameters
y ~ N(@"z,0%)

* Conditional distribution of y:

— Bayesian: parameters as random variables

p(ylz,0,0%)

— Frequentist: parameters as (unknown) constants

Po o2 (y|ﬂi‘)




So far ...




Independent and Identically
Distributed (iid) Data

* For n data points:

D = {(2131,y1), SRR (xnvyn)}
= (@, i) bizq

Plate Diagram

Independent Variable Response Variable
(Vector) (Scalar)
x; E Rp y; € R
ie{l,...,n}




Joint Probability

o—@

* For n data points independent and identically
distributed (iid):

p(D) = H p(Ti, Yi)

= Hp(fﬂi)l?(yim)



Rewriting with Matrix Notation

Represent data D = {(x;,y;) }i—q as:

Covariate (Design) Response
Matrix Vector
" — T1— n- [ Y1
— X2 — Y2
o Assume X :
— Ty — ) hasrankp
- (not degenerate) a Yn




Rewriting with Matrix Notation
* Rewriting the model using matrix operations:
Y = X0 + ¢

Y:X€+€

P

=y




Estimating the Model

e Given data how can we estimate 07
Y = X0 + ¢

e Construct maximum likelihood estimator (MLE):
— Derive the log-likelihood

— Find 6,, ( that maximizes log-likelihood

* Analytically: Take derivative and set =0
* lteratively: (Stochastic) gradient descent



Joint Probability

o @n

* For n data points:

- Hw@p(yz—\xi)
1=1




Defining the Likelihood

po(ylr) =
n e (_ ! _2§2 E )

o\ 2T




Maximizing the Likelihood

* Want to compute:

AN

Orivp = arg max £(6|D)

* To simplify the calculations we take the log:

Ouir = arg maxlog £(0|D) [

o 1 2 3 4 5
A

which does not affect the maximization because
log is a monotone function.




L(0|D) = Jn(;ﬁ)% exp <—% Z(yi - 9T$i)2)

* Take the log:

log L(6|D) = —log(c™(2m)* ) — 2% > (yi — 0" ;)

o~ £
1=1

* Removing constant terms with respect to O:

n

log L(0) = — Z(?/z — 0" x;)”

1 Monotone Function
1= (Easy to maximize)



n

log £(0) = = Y (yi — 6" x:)°

1=1

* Want to compute:
Ouire = arg maxlog £(0|D)
6 cRP

* Plugging in log-likelihood:

n

2 _ . 0T . \2
HMLE—arggréﬁRg Z(yz 0" ;)

1=1



n

2 — . T . 2
OriLe = arg gé%}g — 2;(?/@ 0 sz)
—

* Dropping the sign and flipping from maximization
to minimization: .

éMLE = arg min (?/z — «9Ta:7;)2
O cRp z':l\ }

Minimize Sum (Error)?

a ™
* Gaussian Noise Model - Squared Loss

— Least Squares Regression
NG J




Pictorial Interpretation of
Squared Error
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Maximizing the Likelihood
(Minimizing the Squared Error)

A

n

v — arg min 0T )
wip = arg min ) (y; i)
1=1
A — log L(6
Convex Function g ( )
\Jopeo
—9
v QMELE

* Take the gradient anc

set it equal to zero



Minimizing the Squared Error

n

0 — arg min 9T )2
MLE geeRP (yz Z)

1=1

* Taking the gradient

n

—Vyglog L(0) = Vg Z(yz — (9TCIJZ')2

1=1

Chain Rule > = —2 Z — HT%

1=1 1=1



* Rewriting the gradient in matrix form:
~Volog £(0) = =2 yiwi +2) (6" x)z;
i=1 i=1

— 92Xy +9Xx1Xx6

* To make sure the log-likelihood is convex
compute the second derivative (Hessian)

—Vilog L(0) =2X1X

* If Xis full rank then XX is positive definite and
therefore 6, is the minimum

— Address the degenerate cases with regularization



—VologL(0) = —2X"y+2X1 X0 =0

* Setting gradient equal to 0 and solve for 9,,;:

-

Ore = (XTX)1XTY

(XTX) 0w = XTY

~

J

0 P N-1/

N

| =

Normal

Equations
(Write on
board)



Geometric Interpretation

* View the MLE as finding a projection on col(X)
— Define the estimator:

A

Y = X0

— Observe that Y is in col(X)
* linear combination of cols of X

— Want to Y closest to Y

* Implies (Y-Y) normal to X



Connection to Pseudo-Inverse
O = (XTX)1XTY
J

1

I
Moore-Penrose X T
Psuedoinverse

* Generalization of the inverse:
— Consider the case when X is square and invertible:

XJ[ _ (XTX)—lXT _ X—l(XT)—lXT _ X—l

— Which implies 6,,, = X1 Y the solution
to X0 =Y when Xis square and invertible



Computing the MLE
Oure = (XTX) 1 XTY

* Not typically solved by inverting X"X

e Solved using direct methods:
— Cholesky factorization:

or use the
* Up to a factor of 2 faster i e
— QR factorization: in your math library.

5 %k k
« More numerically stable R: solve(Xt %% X, Xt %% y)

e Solved using various iterative methods:

— Krylov subspace methods
— (Stochastic) Gradient Descent

http://www.seas.ucla.edu/~vandenbe/103/lectures/agr.pdf




Cholesky Factorization

solve (‘XTX,)HAMLE :‘XTY,
OMLE C'f C'I'

Connections to graphical model inference:
http://ssg.mit.edu/~willsky/publ pdfs/185 pub MLR.pdf and
http://yvaroslavvb.blogspot.com/2011/02/junction-trees-in-numerical-analysis.html with illustrations




Solving Triangular System

All A12 A13 A14 Xl
A22 A23 A24 XZ

sk —
A33 A34 X3




Solving Triangular System

A X | ALXs | AaXs | A, [ g
TI7L 771272 | PH3T3 | THATA o =h A Lxo-A A,
All
AgaXy | AxaXs | AggXy ff —b-Ax-A g
X5=027A3X57 A%y
A22
AgsXz | AggXy [ g
X3=(D3-Age%,)
RO A33
OUSC A44X4 I >
0/7;‘@1 X;=by A4y
T




Distributed Direct Solution (Map-Reduce)
Oure = (XTX)"1XTY

* Distribution computations of sums:

P n
p C=X'X= szx? O(np®)
i=1
1 mn
Hp d=X"y= Z XiYi O(np)

i=1
* Solve system C©,, . = d on master. O(p°)



Gradient Descent:
What if p is large? (e.g., n/2)
* The cost of O(np?) = O(n3) could by prohibitive
e Solution: Iterative Methods

— Gradient Descent:

For 7 from © until convergence

plr+1) — g(7) — p(7 )V log £(07)| D)

Learning rate



Gradient Descent lllustrated:

—log L(8) .

U

Convex Function

A




Gradient Descent:
What if p is large? (e.g., n/2)

* The cost of O(np?) = O(n3) could by prohibitive
e Solution: Iterative Methods
— Gradient Descent:

For 7 from @ until convergence

O+ = 97) — p(7)Vlog L(67)|D)

1
— 00 4 p(r) = S (i — 0Tz )ai O(np)

n -
L=l )
i

Estimate of the Gradient

e Can we do better?



Stochastic Gradient Descent

e Construct noisy estimate of the gradient:

For 7 from © until convergence

1) pickR a random 1
2) 9t = 0 4 p(r) (g = 0T w)a| O(p)

* Sensitive to choice of p(t) typically (p(t)=1/7)

* A
* A

so known as Least-Mean-Squares (LMS)

oplies to streaming data O(p) storage



Fitting Non-linear Data

* What if Y has a non-linear response?
20} °®

10+

e Can we still use a linear model?



Transforming the Feature Space

* Transform features x;
i = (Xi1, X2, Xip)

* By applying non-linear transformation ¢:
¢:RP — R”
* Example:
o(x) = {1,z,2°,... 2"}

— others: splines, radial basis functions, ...

— Expert engineered features (modeling)



Under-fitting

{1.) {1., x}

Over-fitting



Really Over-fitting!

{1.,x,xz,x3,x4,x5,x6,x7,x8,x9,x10,x“,xlz,xB,x”}

Ll
* Errors on training data are small
 But errors on new points are likely to be large



What if | train on different data?

Low Variability:

{1.,x,x ,X } {1.,x,x2,x3} {1.,x,x2,x3}
2 - 2

°
Q °
3 4 5 -1
o [}
0
e 1l
°
°

High Variability

{1.,x,x2,x3,x4,xs,x6,x7,x8,)€9,x10,x“,XIZ,XB»XM}
2




Bias-Variance Tradeoff

e So far we have minimized the error (loss) with
respect to training data

— Low training error does not imply good expected
performance: over-fitting

 We would like to reason about the expected
loss (Prediction Risk) over:

— Training Data: {(y,, X;), ---, (Y, X,)}
— Test point: (y«, X«)

* We will decompose t

— f(z|D))*

Ep (y.,z.) [(y*

ne expected loss into:

. . 9 .
= Noise 4+ Bias® + Variance




e Define (unobserved) the true model (h):

Assume 0 mean noise
y>|< — h(x*) _I_ 6>|< [bias goes in h(x.)]

» Completed the squares with: h(x,) = h, |

Ep (y. .z (Y« — f(l“*’D))ﬂ

— ED,(y*,a:*) [(y* [— h(x,) + h(CIZ*)} — f(x*‘D))Q]
\ J \ )

Y Y
a b

(a +b)* = a® + b* + 2ab

= Ee. [(y- — h(z ))2] +Ep [(h(l’*) — f(@.|D))"]



e Define (unobserved) the true model (h):

* Completed the squares with: x(z,) = h,

Ep (y. 2.) [(y* - f(a:*!D))ﬂ Expected Loss
= ED,(?J*,CB*) [(y* — h(CL‘*) T h(x*) — f(:l,‘*‘D))Q]

— Ee. [(y. — h(z.))?] + Ep [(h(zs) — f(2.]D))?]

+ 2B D (y. o) [l = Yufohrbre =T o]
\ )

Y Substitute defn. y. = h. + e.

hattl+ Ble, i — hBA.] — Bf€. f. —hh. + h,BATL.]




e Define (unobserved) the true model (h):

* Completed the squares with: x(z,) = h,

Ep (g, o) |(Ys — f(z«]D))?| Expected Loss
=Ep,(y.2.) [(Y — h(zs) + h(2s) = f(2:]D))?]

Z\Ee* (s — h(x*))z]ﬁ-\ED (h(xs) = f (w*ID))Q}’
! !
Noise Term Model Estimation Error
(out of our control) (we want to minimize this)
® Expand

* Minimum error is governed by the noise.



* Expanding on the model estimation error:
Ep [(h(zs) = f(x.]D))?]
e Completing the squares with E [f(z.|D)] = f.

Ep [(h(zs) — f(x.]D))?]
~ E [(h(e.) — E[f(2.D)] + E[f(2.ID)] ~ f(a.|D))?

= E [(h(z«) — E[f(24|D)])?] + E [(f(2+]D) — E[f(2:]| D)])?]
+ 2E | h fomtinfe—TT ff]-
|

I ~ ~
=hofe —hE[f] - LE[L]+ f] =
— fuf

hefe=hofe = Fofot F2=0




* Expanding on the model estimation error:
Ep [(h(zs) = f(x.]D))?]
* Completing the squares with E [f(x.|D)| = f.

Ep |(h(z.) — f(2|D))?
=E [(h(z:) — E[f(2.|D)])?] + E [(f(2.|D) — E[f(z+|D)])?]

(h(z.) — E[f(z.|D)])”



* Expanding on the model estimation error:
Ep [(h(zs) = f(x.]D))?]
* Completing the squares with E [f(x.|D)| = f.

= (h(z.) — E[f(z:|D)])* + E [(f(.]D) — E[f(2.|D)])"]

(Bias)? Variance

* Tradeoff between bias and variance:
— Simple Models: High Bias, Low Variance
— Complex Models: Low Bias, High Variance



Summary of Bias Variance Tradeoff

Ep (y..z.) [(y* — f(:l:‘*|D))2} = Expected Loss
Ee* [(y* — h(ﬂf*))Q] Noise
+ (h(z) — Ep [f(x.|D)])? (Bias)

+Ep [(f(z«|D) — Ep [f(z.|D)])?] variance

* Choice of models balances bias and variance.
— Over-fitting =» Variance is too High
— Under-fitting =2 Bias is too High



Error

Bias Variance Plot

Total Error

Variance

Optimum Model Complexity

Bias

s >
Model Complexity

Image from http://scott.fortmann-roe.com/docs/BiasVariance.html



Analyze bias of f(ﬂf*‘D) — xZéMLE

» Assume a true model is linear: h(z,) = 210
bias = h(xs) — Ep [f(x.|D)]

=219 —Ep
:xZH—ED:
::U*T@—ED:
:x*TH—ED:
:QjTQ—ED:

( TX) 1XTY} Expand and cancel
(X' X)X (X0 + €)] /

(XT"X)7'XTX0+ 2l (XTX)7 X e
T+ 2T (XTX)1XTe]

" A Substitute MLE
L 9MLEi| ‘ﬁn definition of Y

Assumption:

=zl — 20+ 2 (XT X)) XTEp [€] Eple =0

=zl —2l9=0 .

. . '
0, is unbiased!



Analyze Variance of f(z.|D) = 210y,

» Assume a true model is linear: h(z,) = 210

Var. = K

* Use property of scalar:a?=aa’

(f(@.1D) = Ep [f(@.|D))’]

,’L‘THMLE — 3339)2} Substitute MLE + unbiased result

_1XTY . $T(9)2} Plug in definition of Y

Expand and cancel



Analyze Variance of f(z.|D) = x; 0yrs
e Use property of scalar: a2=aa'

Var. = E [(f(2+|D) — Ep [f(z.|D)))?]
=E [(z. (X" X)X ¢)]
=E [(z, (X7 X)X €)(z, (XTX) X )]
— E o7 (X" X)X ec” (27 (X7 X) 7 X))
= 2T (XTX) ' XTE [e7] (27 (XTX) 1 XT)7
= 2T (XTX) ' XTI (2T (XT X)L x T
= ola, (X7 X)X X (2, (XTX)7)T
= ola, (v, (X7 X)7)"

ol (X X)) e,




Consequence of Variance Calculation

Var. = E |(f(z«|D) — Ep [f(fv*’D)])z]

= ozl (XTX) 'z,

€ T x

___________________

- ... | f-l..-
[ .

X X
Higher Variance Lower Variance

Figure from http://people.stern.nyu.edu/wgreene/MathStat/GreeneChapter4.pdf




Summary

* Least-Square Regression is Unbiased:
Ep {LCZ@AMLE} = x*TH
* Variance depends on:

E [(f(2:]D) = E[f(2.]D)])*] = olay (X* X))

— Number of data-points n
— Dimensionality p
— Not on observations Y



Deriving the final identity
* Assume x. and x. are N(0,1)

Ex ., [Var| = 0?Ex ., [z0 (X' X) 'z, ]
— USEX@* :tr(:v*azf(XTX)_l)]
— aftr(Ex,x* [IB*IEI(XTX)_l})

= otr(E,, [z, | Ex [(XTX)7])
2
_ % T
o;

= —p
T




Gauss-Markov Theorem
* The linear model:
flzy) = :EZ{HAMLE = x:{(XTX)_lXTY

has the minimum variance among all
unbiased linear estimators

— Note that thisis linearin Y

e BLUE: Best Linear Unbiased Estimator



Summary

Introduced the Least-Square regression model
— Maximum Likelihood: Gaussian Noise

— Loss Function: Squared Error

— Geometric Interpretation: Minimizing Projection
Derived the normal equations:

— Walked through process of constructing MLE

— Discussed efficient computation of the MLE
Introduced basis functions for non-linearity
— Demonstrated issues with over-fitting

Derived the classic bias-variance tradeoff

— Applied to least-squares model






Additional Reading | found Helpful

nttp://www.stat.cmu.edu/~roeder/stat707/
ectures.pdf

nttp://people.stern.nyu.edu/wgreene/
MathStat/GreeneChapter4.pdf

nttp://www.seas.ucla.edu/~vandenbe/103/
ectures/qgr.pdf

nttp://www.cs.berkeley.edu/~jduchi/projects/
matrix prop.pdf




