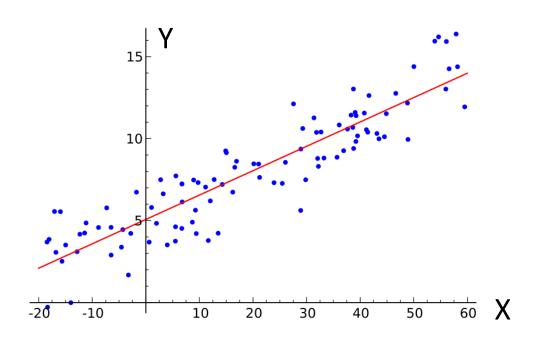
Linear Regression and the Bias Variance Tradeoff

Guest Lecturer
Joseph E. Gonzalez

slides available here: http://tinyurl.com/reglecture

Simple Linear Regression

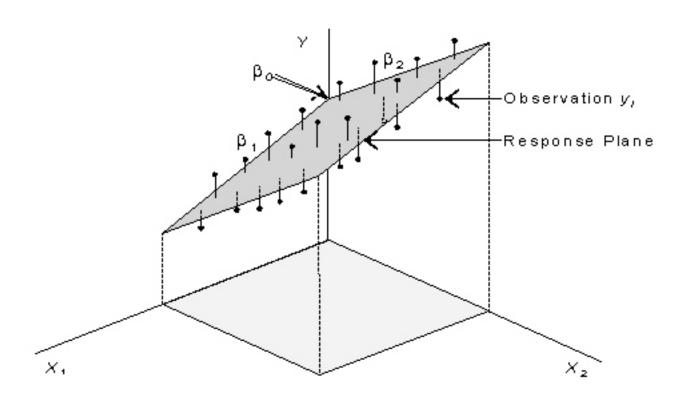


Response Variable Covariate Linear Model: Y=mX+b Slope Intercept (bias)

Motivation

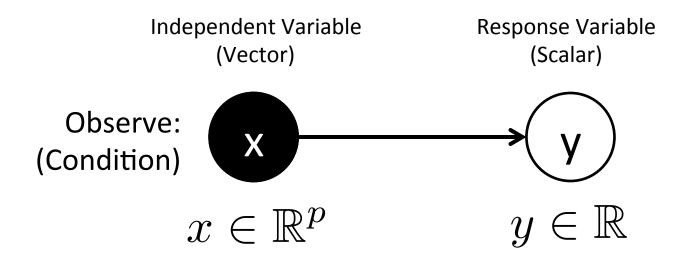
- One of the most widely used techniques
- Fundamental to many larger models
 - Generalized Linear Models
 - Collaborative filtering
- Easy to interpret
- Efficient to solve

Multiple Linear Regression



The Regression Model

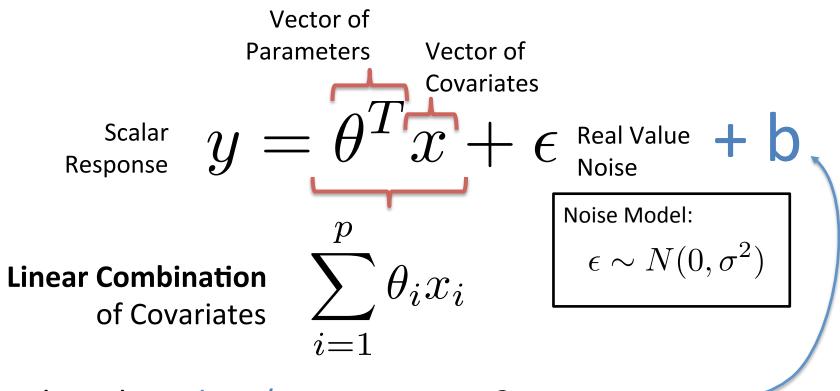
For a single data point (x,y):



Joint Probability:

$$p(x,y) = p(x)p(y|x) \qquad \text{\tiny Discriminative \\ Model}$$

The Linear Model



What about bias/intercept term?

Define:
$$x_{p+1} = 1$$

Conditional Likelihood p(y|x)

Conditioned on x:

$$y = \theta^T x + \epsilon \sim N(0, \sigma^2)$$
 Mean Variance

Conditional distribution of Y:

$$Y \sim N(\theta^T x, \sigma^2)$$
$$p(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - \theta^T x)^2}{2\sigma^2}\right)$$

Parameters and Random Variables

Parameters

$$y \sim N(\theta^T x, \sigma^2)$$

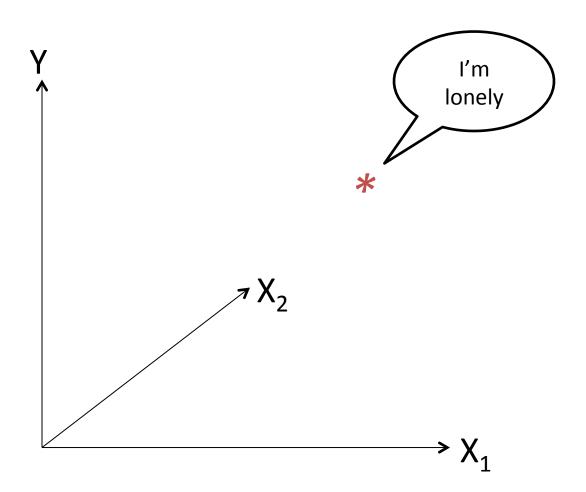
- Conditional distribution of y:
 - Bayesian: parameters as random variables

$$p(y|x,\theta,\sigma^2)$$

Frequentist: parameters as (unknown) constants

$$p_{\theta,\sigma^2}(y|x)$$

So far ...

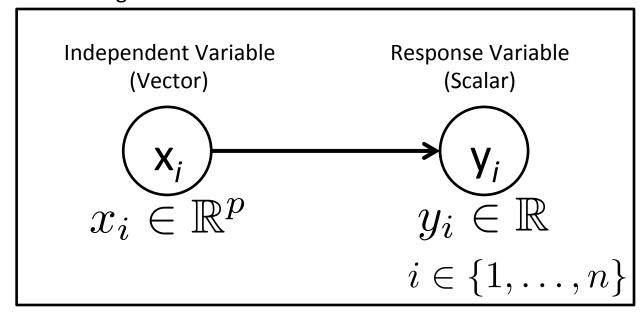


Independent and Identically Distributed (iid) Data

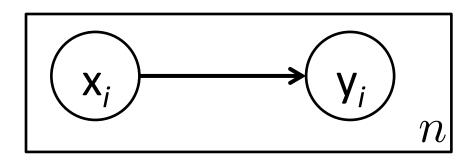
• For *n* data points:

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$
$$= \{(x_i, y_i)\}_{i=1}^n$$

Plate Diagram



Joint Probability



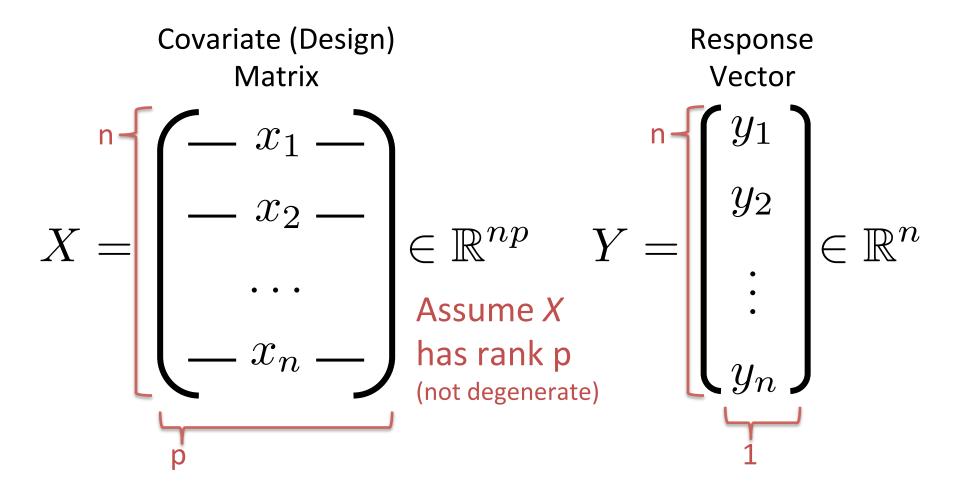
For n data points independent and identically distributed (iid):

$$p(\mathcal{D}) = \prod_{i=1}^{n} p(x_i, y_i)$$

$$= \prod_{i=1}^{n} p(x_i) p(y_i | x_i)$$

Rewriting with Matrix Notation

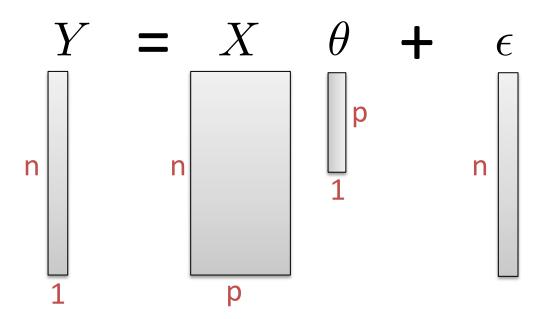
• Represent data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ as:



Rewriting with Matrix Notation

Rewriting the model using matrix operations:

$$Y = X\theta + \epsilon$$



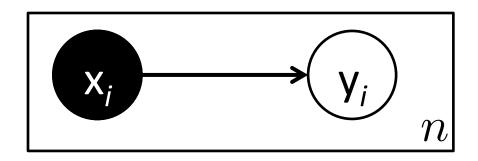
Estimating the Model

• Given data how can we estimate θ ?

$$Y = X\theta + \epsilon$$

- Construct maximum likelihood estimator (MLE):
 - Derive the log-likelihood
 - Find θ_{MLE} that maximizes log-likelihood
 - Analytically: Take derivative and set = 0
 - Iteratively: (Stochastic) gradient descent

Joint Probability



• For *n* data points:

$$p(\mathcal{D}) = \prod_{i=1}^n p(x_i, y_i)$$
 $= \prod_{i=1}^n p(x_i) p(y_i|x_i)$ Discriminative Model

Defining the Likelihood

$$\begin{array}{|c|c|}
\hline
(\mathbf{x}_i) & \mathbf{y}_i \\
n
\end{array}$$

$$p_{\theta}(y|x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - \theta^T x)^2}{2\sigma^2}\right)$$

$$\mathcal{L}(\theta|\mathcal{D}) = \prod_{i=1}^{n} p_{\theta}(y_i|x_i)$$

$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y_i - \theta^T x_i)^2}{2\sigma^2}\right)$$

$$= \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2\right)$$

Maximizing the Likelihood

Want to compute:

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta \in \mathbb{R}^p} \mathcal{L}(\theta | \mathcal{D})$$

To simplify the calculations we take the log:

$$\hat{\theta}_{ ext{MLE}} = rg \max_{\theta \in \mathbb{R}^p} \log \mathcal{L}(\theta | \mathcal{D})$$

which does not affect the maximization because log is a monotone function.

$$\mathcal{L}(\theta|\mathcal{D}) = \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta^T x_i)^2\right)$$

Take the log:

$$\log \mathcal{L}(\theta|\mathcal{D}) = -\log(\sigma^n(2\pi)^{\frac{n}{2}}) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

Removing constant terms with respect to θ:

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$
Monotone Function (Easy to maximize)

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$

Want to compute:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} \log \mathcal{L}(\theta|\mathcal{D})$$

Plugging in log-likelihood:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} - \sum_{i=1}^{N} (y_i - \theta^T x_i)^2$$

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta \in \mathbb{R}^p} - \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

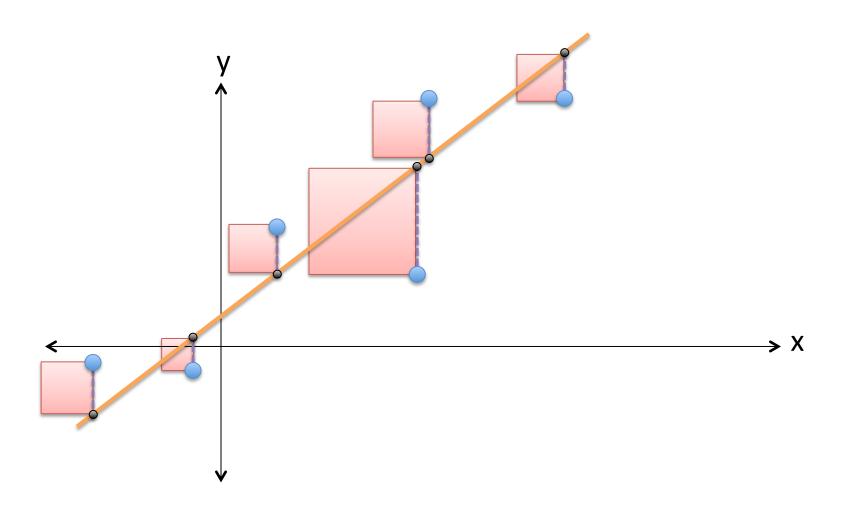
 Dropping the sign and flipping from maximization to minimization:

$$\hat{ heta}_{ ext{MLE}} = rg \min_{ heta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - heta^T x_i)^2$$

Minimize Sum (Error)²

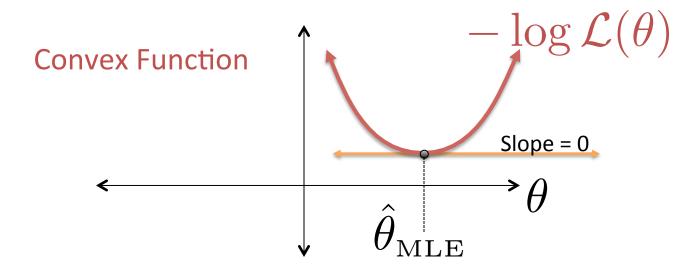
- Gaussian Noise Model → Squared Loss
 - Least Squares Regression

Pictorial Interpretation of Squared Error



Maximizing the Likelihood (Minimizing the Squared Error)

$$\hat{\theta}_{\text{MLE}} = \arg\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$



Take the gradient and set it equal to zero

Minimizing the Squared Error

$$\hat{\theta}_{\text{MLE}} = \arg\min_{\theta \in \mathbb{R}^p} \sum_{i=1}^{\infty} (y_i - \theta^T x_i)^2$$

Taking the gradient

$$-\nabla_{\theta} \log \mathcal{L}(\theta) = \nabla_{\theta} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$
Chain Rule $\Rightarrow = -2 \sum_{i=1}^{n} (y_i - \theta^T x_i) x_i$

$$= -2 \sum_{i=1}^{n} y_i x_i + 2 \sum_{i=1}^{n} (\theta^T x_i) x_i$$

Rewriting the gradient in matrix form:

$$-\nabla_{\theta} \log \mathcal{L}(\theta) = -2\sum_{i=1}^{n} y_i x_i + 2\sum_{i=1}^{n} (\theta^T x_i) x_i$$
$$= -2X^T Y + 2X^T X \theta$$

 To make sure the log-likelihood is convex compute the second derivative (Hessian)

$$-\nabla^2 \log \mathcal{L}(\theta) = 2X^T X$$

- If X is full rank then X^TX is positive definite and therefore θ_{MLF} is the minimum
 - Address the degenerate cases with regularization

$$-\nabla_{\theta} \log \mathcal{L}(\theta) = -2X^{T}y + 2X^{T}X\theta = 0$$

• Setting gradient equal to 0 and solve for θ_{MLE} :

$$(X^T X)\hat{\theta}_{\text{MLE}} = X^T Y$$

$$\hat{\theta}_{\text{MLE}} = (X^T X)^{-1} X^T Y$$

Normal
Equations
(Write on board)

$$\mathbf{p} = \left(\begin{array}{c} \mathbf{n} & \mathbf{p} \\ \hline \end{array} \right)^{-1} \left(\begin{array}{c} \mathbf{n} & \mathbf{1} \\ \hline \end{array} \right)$$

Geometric Interpretation

- View the MLE as finding a projection on col(X)
 - Define the estimator:

$$\hat{Y} = X\theta$$

- Observe that Ŷ is in col(X)
 - linear combination of cols of X
- Want to Ŷ closest to Y
- Implies (Y-Ŷ) normal to X

$$X^{T}(Y - \hat{Y}) = X^{T}(Y - X\theta) = 0$$

$$\Rightarrow X^{T}X\theta = X^{T}Y$$

Connection to Pseudo-Inverse

$$\hat{\theta}_{\mathrm{MLE}} = (X^T X)^{-1} X^T Y$$
Moore-Penrose X^\dagger
Psuedoinverse

- Generalization of the inverse:
 - Consider the case when X is square and invertible:

$$X^{\dagger} = (X^T X)^{-1} X^T = X^{-1} (X^T)^{-1} X^T = X^{-1}$$

– Which implies $\theta_{MLE} = X^{-1} Y$ the solution to $X \theta = Y$ when X is square and invertible

Computing the MLE

$$\hat{\theta}_{\text{MLE}} = (X^T X)^{-1} X^T Y$$

- **Not** typically solved by inverting X^TX
- Solved using direct methods:
 - Cholesky factorization:
 - Up to a factor of 2 faster
 - QR factorization:
 - More numerically stable

or use the built-in solver in your math library.
R: solve(Xt %*% X, Xt %*% y)

- Solved using various iterative methods:
 - Krylov subspace methods
 - (Stochastic) Gradient Descent

Cholesky Factorization

solve
$$(X^T X)\hat{\theta}_{\text{MLE}} = X^T Y$$

• Compute symm. matrix $C = X^T X$

 $O(np^2)$

• Compute vector $d = X^T Y$

O(np)

• Cholesky Factorization $LL^T = C$

 $O(p^3)$

- L is lower triangular
- Forward subs. to solve: Lz = d

 $O(p^2)$

• Backward subs. to solve: $L^T \hat{\theta}_{\text{MLE}} = z$

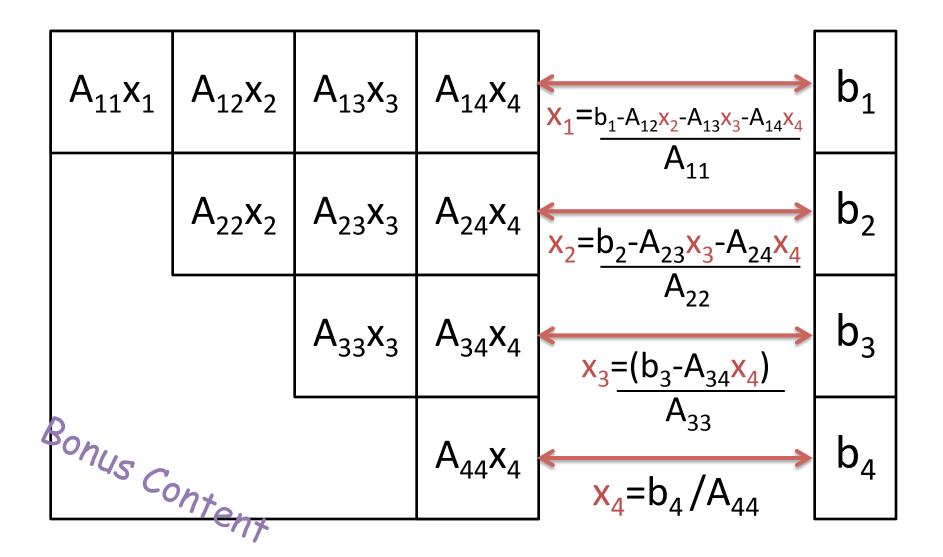
 $O(p^2)$

Connections to graphical model inference:

Solving Triangular System

A ₁₁	A ₁₂	A ₁₃	A ₁₄	*	X ₁		b ₁
	A ₂₂	A ₂₃	A ₂₄		X ₂		b ₂
		A ₃₃	A ₃₄		X ₃		b ₃
Bonus Content			A ₄₄		X ₄		b ₄

Solving Triangular System



Distributed Direct Solution (Map-Reduce)

$$\hat{\theta}_{\text{MLE}} = (X^T X)^{-1} X^T Y$$

Distribution computations of sums:

$$\mathbf{p} \boxed{ } \quad C = X^T X = \sum_{i=1}^n x_i x_i^T \qquad \quad O(np^2)$$

$$\int_{\mathbf{p}}^{\mathbf{p}} d = X^T y = \sum_{i=1}^{n} x_i y_i \qquad O(np)$$

• Solve system $C \theta_{MIF} = d$ on master.

Gradient Descent:

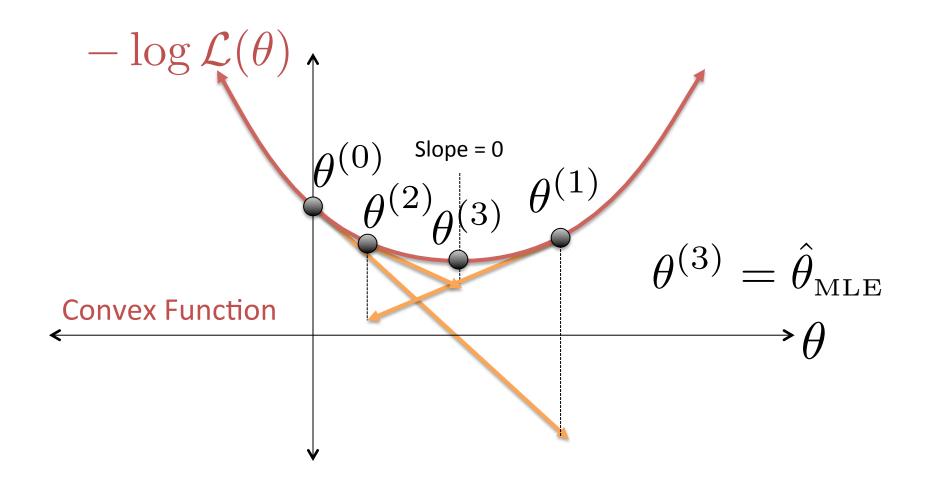
What if p is large? (e.g., n/2)

- The cost of $O(np^2) = O(n^3)$ could by prohibitive
- Solution: Iterative Methods
 - Gradient Descent:

For τ from 0 until convergence

$$\theta^{(\tau+1)} = \theta^{(\tau)} - \rho(\tau) \nabla \log \mathcal{L}(\theta^{(\tau)}|D)$$
 Learning rate

Gradient Descent Illustrated:



Gradient Descent:

What if p is large? (e.g., n/2)

- The cost of $O(np^2) = O(n^3)$ could by prohibitive
- Solution: Iterative Methods
 - Gradient Descent:

For τ from 0 until convergence

$$\theta^{(\tau+1)} = \theta^{(\tau)} - \rho(\tau) \nabla \log \mathcal{L}(\theta^{(\tau)}|D)$$

$$= \theta^{(\tau)} + \rho(\tau) \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^{(\tau)T} x_i) x_i \quad O(np)$$

Can we do better?

Estimate of the Gradient

Stochastic Gradient Descent

Construct noisy estimate of the gradient:

```
For 	au from 0 until convergence

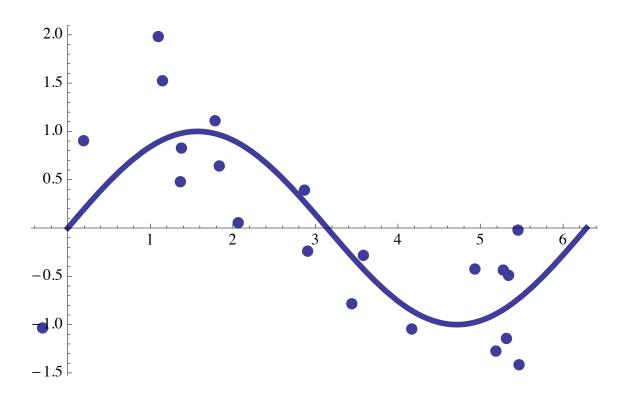
1) pick a random i

2) 	heta^{(	au+1)} = 	heta^{(	au)} + 
ho(	au) (y_i - 	heta^{(	au)T} x_i) x_i O(p)
```

- Sensitive to choice of $\rho(\tau)$ typically $(\rho(\tau)=1/\tau)$
- Also known as Least-Mean-Squares (LMS)
- Applies to streaming data O(p) storage

Fitting Non-linear Data

What if Y has a non-linear response?



• Can we still use a linear model?

Transforming the Feature Space

• Transform features x_i

$$x_i = (X_{i,1}, X_{i,2}, \dots, X_{i,p})$$

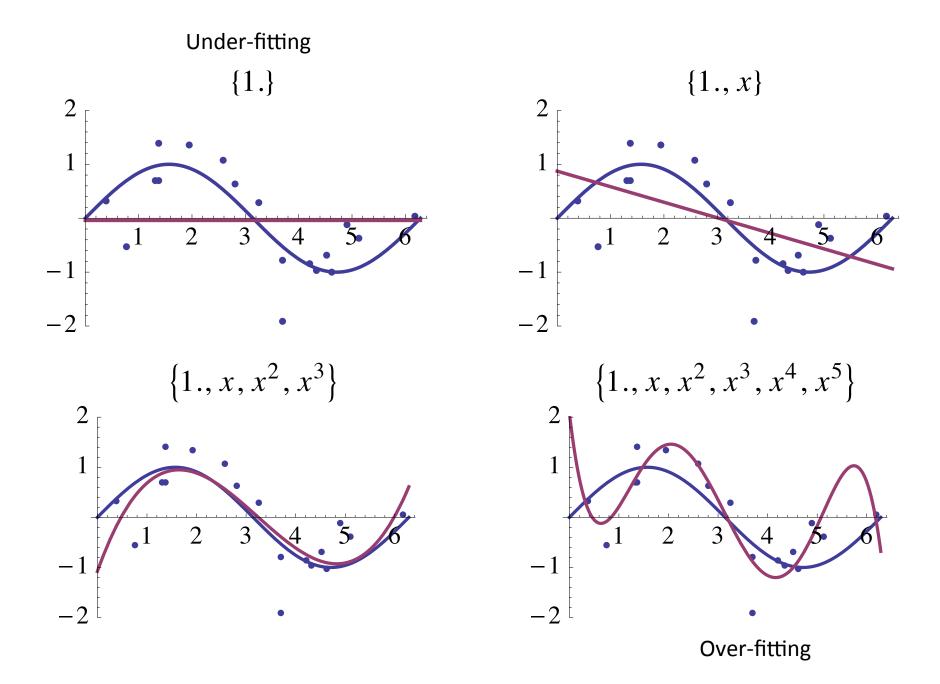
• By applying non-linear transformation ϕ :

$$\phi: \mathbb{R}^p \to \mathbb{R}^k$$

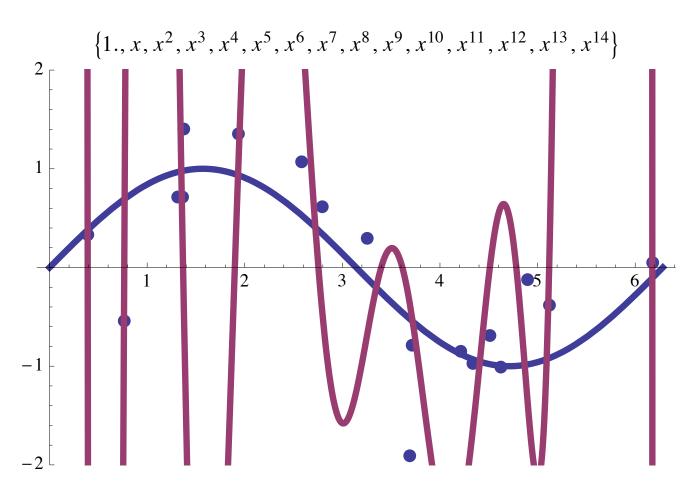
Example:

$$\phi(x) = \{1, x, x^2, \dots, x^k\}$$

- others: splines, radial basis functions, ...
- Expert engineered features (modeling)



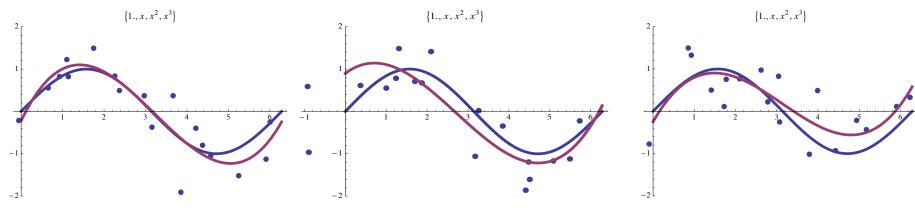
Really Over-fitting!



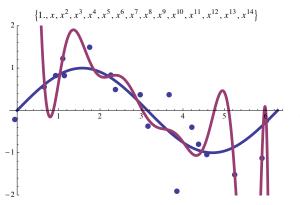
- Errors on training data are small
- But errors on new points are likely to be large

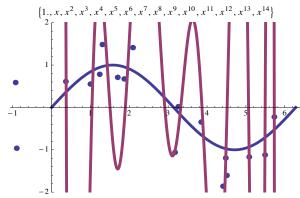
What if I train on different data?

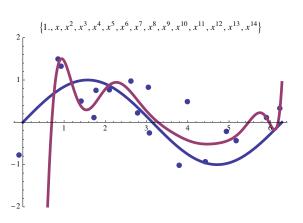
Low Variability:



High Variability







Bias-Variance Tradeoff

- So far we have minimized the error (loss) with respect to training data
 - Low training error does not imply good expected performance: over-fitting
- We would like to reason about the expected loss (Prediction Risk) over:
 - Training Data: $\{(y_1, x_1), ..., (y_n, x_n)\}$
 - Test point: (y_*, x_*)
- We will decompose the expected loss into:

$$\mathbf{E}_{D,(y_*,x_*)}\left[(y_* - f(x_*|D))^2\right] = \text{Noise} + \text{Bias}^2 + \text{Variance}$$

Define (unobserved) the true model (h):

$$y_* = h(x_*) + \epsilon_*$$

Assume 0 mean noise [bias goes in $h(x_*)$]

• Completed the squares with: $h(x_*) = h_*$

$$\begin{aligned} \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - f(x_*|D))^2 \right] & \text{Expected Loss} \\ &= \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - h(x_*) + h(x_*) - f(x_*|D))^2 \right] \\ & \text{a} & \text{b} \\ & (a+b)^2 = a^2 + b^2 + 2ab \end{aligned}$$

$$= \mathbf{E}_{\epsilon_*} \left[(y_* - h(x_*))^2 \right] + \mathbf{E}_D \left[(h(x_*) - f(x_*|D))^2 \right] + 2\mathbf{E}_{D,(y_*,x_*)} \left[y_* h_* - y_* f_* - h_* h_* + h_* f_* \right]$$

Define (unobserved) the true model (h):

$$y_* = h(x_*) + \epsilon_*$$

• Completed the squares with: $h(x_*) = h_*$

$$\begin{split} \mathbf{E}_{D,(y_*,x_*)} & \left[(y_* - f(x_*|D))^2 \right] \text{ Expected Loss} \\ &= \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - h(x_*) + h(x_*) - f(x_*|D))^2 \right] \\ &= \mathbf{E}_{\epsilon_*} \left[(y_* - h(x_*))^2 \right] + \mathbf{E}_D \left[(h(x_*) - f(x_*|D))^2 \right] \\ &+ 2 \mathbf{E}_{D,(y_*,x_*)} \left[y_* h_* - y_* f_* - h_* h_* + h_* f_* \right] \end{split}$$
 Substitute defn. $y_* = h_* + e_*$

$$\mathbf{E}\left[(h_* + \epsilon_*)h_* - (h_* + \epsilon_*)f_* - h_*h_* + h_*f_* \right] =$$

$$h_*h_* + \mathbf{E}[\epsilon_*]h_* - h_*\mathbf{E}[f_*] - \mathbf{E}[\epsilon_*]f_* - h_*h_* + h_*\mathbf{E}[f_*]$$

Define (unobserved) the true model (h):

$$y_* = h(x_*) + \epsilon_*$$

• Completed the squares with: $h(x_*) = h_*$

$$\begin{split} \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - f(x_*|D))^2 \right] & \text{Expected Loss} \\ &= \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - h(x_*) + h(x_*) - f(x_*|D))^2 \right] \\ &= \mathbf{E}_{\epsilon_*} \left[(y_* - h(x_*))^2 \right] + \mathbf{E}_D \left[(h(x_*) - f(x_*|D))^2 \right] \\ & \text{Noise Term} \\ & \text{(out of our control)} \\ & \otimes & \text{Expand} \end{split}$$

Minimum error is governed by the noise.

Expanding on the model estimation error:

$$\mathbf{E}_D \left[(h(x_*) - f(x_*|D))^2 \right]$$

• Completing the squares with $\mathbf{E}\left[f(x_*|D)\right] = \bar{f}_*$

$$\begin{split} \mathbf{E}_{D} \left[(h(x_{*}) - f(x_{*}|D))^{2} \right] \\ &= \mathbf{E} \left[(h(x_{*}) - \mathbf{E} \left[f(x_{*}|D) \right] + \mathbf{E} \left[f(x_{*}|D) \right] - f(x_{*}|D))^{2} \right] \\ &= \mathbf{E} \left[(h(x_{*}) - \mathbf{E} \left[f(x_{*}|D) \right])^{2} \right] + \mathbf{E} \left[(f(x_{*}|D) - \mathbf{E} \left[f(x_{*}|D) \right])^{2} \right] \\ &+ 2\mathbf{E} \left[h_{*} \bar{f}_{*} - h_{*} f_{*} - \bar{f}_{*} f_{*} + \bar{f}_{*}^{2} \right] \\ &= h_{*} \bar{f}_{*} - h_{*} \mathbf{E} \left[f_{*} \right] - \bar{f}_{*} \mathbf{E} \left[f_{*} \right] + \bar{f}_{*}^{2} = \\ &h_{*} \bar{f}_{*} - h_{*} \bar{f}_{*} - \bar{f}_{*} \bar{f}_{*} + \bar{f}_{*}^{2} = 0 \end{split}$$

Expanding on the model estimation error:

$$\mathbf{E}_D\left[(h(x_*) - f(x_*|D))^2\right]$$

• Completing the squares with $\mathbf{E}\left[f(x_*|D)\right] = \bar{f}_*$

$$\mathbf{E}_{D} \left[(h(x_{*}) - f(x_{*}|D))^{2} \right]$$

$$= \mathbf{E} \left[(h(x_{*}) - \mathbf{E} \left[f(x_{*}|D) \right]^{2} \right] + \mathbf{E} \left[(f(x_{*}|D) - \mathbf{E} \left[f(x_{*}|D) \right]^{2} \right]$$

$$(h(x_{*}) - \mathbf{E} \left[f(x_{*}|D) \right]^{2}$$

Expanding on the model estimation error:

$$\mathbf{E}_D\left[\left(h(x_*) - f(x_*|D)\right)^2\right]$$

• Completing the squares with $\mathbf{E}\left[f(x_*|D)\right] = \overline{f}_*$

$$\mathbf{E}_D\left[(h(x_*)-f(x_*|D))^2\right]\\ = (h(x_*)-\mathbf{E}\left[f(x_*|D)\right])^2+\mathbf{E}\left[(f(x_*|D)-\mathbf{E}\left[f(x_*|D)\right])^2\right]$$
 (Bias)² Variance

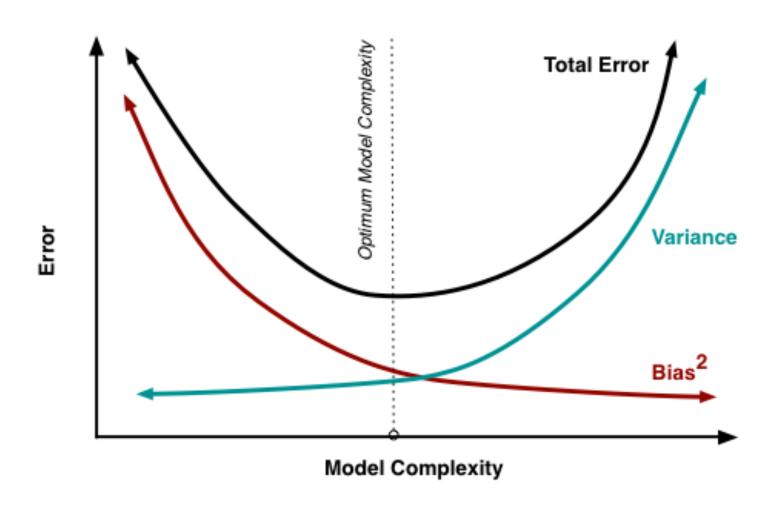
- Tradeoff between bias and variance:
 - Simple Models: High Bias, Low Variance
 - Complex Models: Low Bias, High Variance

Summary of Bias Variance Tradeoff

$$\begin{split} \mathbf{E}_{D,(y_*,x_*)} \left[(y_* - f(x_*|D))^2 \right] &= & \mathbf{E} \mathbf{x} \mathbf{p} \mathbf{e} \mathbf{c} \mathbf{t} \mathbf{d} \mathbf{L} \mathbf{o} \mathbf{s} \\ \mathbf{E}_{\epsilon_*} \left[(y_* - h(x_*))^2 \right] & \text{Noise} \\ &+ (h(x_*) - \mathbf{E}_D \left[f(x_*|D) \right])^2 & \text{(Bias)}^2 \\ &+ \mathbf{E}_D \left[(f(x_*|D) - \mathbf{E}_D \left[f(x_*|D) \right])^2 \right] \mathbf{V} \mathbf{a} \mathbf{r} \mathbf{i} \mathbf{a} \mathbf{n} \mathbf{c} \mathbf{e} \end{split}$$

- Choice of models balances bias and variance.
 - Over-fitting → Variance is too High
 - Under-fitting → Bias is too High

Bias Variance Plot



Analyze bias of $f(x_*|D) = x_*^T \hat{\theta}_{\text{MLE}}$

• Assume a true model is linear: $h(x_*) = x_*^T \theta$

$$\begin{aligned} &\text{bias} = h(x_*) - \mathbf{E}_D \left[f(x_*|D) \right] \\ &= x_*^T \theta - \mathbf{E}_D \left[x_*^T \hat{\theta}_{\text{MLE}} \right] \end{aligned} \qquad \text{Plug in definition of Y} \\ &= x_*^T \theta - \mathbf{E}_D \left[x_*^T (X^T X)^{-1} X^T Y \right] \end{aligned} \qquad \text{Expand and cancel} \\ &= x_*^T \theta - \mathbf{E}_D \left[x_*^T (X^T X)^{-1} X^T (X \theta + \epsilon) \right] \end{aligned} \\ &= x_*^T \theta - \mathbf{E}_D \left[x_*^T (X^T X)^{-1} X^T X \theta + x_*^T (X^T X)^{-1} X^T \epsilon \right] \\ &= x_*^T \theta - \mathbf{E}_D \left[x_*^T \theta + x_*^T (X^T X)^{-1} X^T \epsilon \right] \end{aligned} \qquad \text{Assumption:} \\ &= x_*^T \theta - x_*^T \theta + x_*^T (X^T X)^{-1} X^T \mathbf{E}_D \left[\epsilon \right] \end{aligned} \qquad \mathbf{E}_D \left[\epsilon \right] = 0 \\ &= x_*^T \theta - x_*^T \theta = 0 \end{aligned}$$

Analyze Variance of $f(x_*|D) = x_*^T \hat{\theta}_{\text{MLE}}$

• Assume a true model is linear: $h(x_*) = x_*^T \theta$

$$\begin{aligned} & \text{Var.} = \mathbf{E} \left[(f(x_*|D) - \mathbf{E}_D \left[f(x_*|D) \right])^2 \right] \\ & = \mathbf{E} \left[(x_*^T \hat{\theta}_{\text{MLE}} - x_*^T \theta)^2 \right] \end{aligned} \qquad \text{Substitute MLE + unbiased result} \\ & = \mathbf{E} \left[(x_*^T (X^T X)^{-1} X^T Y - x_*^T \theta)^2 \right] \end{aligned} \qquad \overset{\text{Plug in definition of Y}}{= \mathbf{E} \left[(x_*^T (X^T X)^{-1} X^T (X \theta + \epsilon) - x_*^T \theta)^2 \right]} \\ & = \mathbf{E} \left[(x_*^T \theta + x_*^T (X^T X)^{-1} X^T \epsilon - x_*^T \theta)^2 \right] \\ & = \mathbf{E} \left[(x_*^T (X^T X)^{-1} X^T \epsilon)^2 \right] \end{aligned}$$

• Use property of scalar: $a^2 = a a^T$

Expand and cancel

Analyze Variance of $f(x_*|D) = x_*^T \hat{\theta}_{\text{MLE}}$

• Use property of scalar: $a^2 = a a^T$

Var. =
$$\mathbf{E} \left[(f(x_*|D) - \mathbf{E}_D [f(x_*|D)])^2 \right]$$

= $\mathbf{E} \left[(x_*^T (X^T X)^{-1} X^T \epsilon)^2 \right]$
= $\mathbf{E} \left[(x_*^T (X^T X)^{-1} X^T \epsilon) (x_*^T (X^T X)^{-1} X^T \epsilon)^T \right]$
= $\mathbf{E} \left[x_*^T (X^T X)^{-1} X^T \epsilon \epsilon^T (x_*^T (X^T X)^{-1} X^T)^T \right]$
= $x_*^T (X^T X)^{-1} X^T \mathbf{E} \left[\epsilon \epsilon^T \right] (x_*^T (X^T X)^{-1} X^T)^T$
= $x_*^T (X^T X)^{-1} X^T \sigma_{\epsilon}^2 I(x_*^T (X^T X)^{-1} X^T)^T$
= $\sigma_{\epsilon}^2 x_*^T (X^T X)^{-1} X^T X(x_*^T (X^T X)^{-1})^T$
= $\sigma_{\epsilon}^2 x_*^T (x_*^T (X^T X)^{-1})^T$
= $\sigma_{\epsilon}^2 x_*^T (X^T X)^{-1} x_*$

Consequence of Variance Calculation

Var. =
$$\mathbf{E} \left[(f(x_*|D) - \mathbf{E}_D \left[f(x_*|D) \right])^2 \right]$$

= $\sigma_{\epsilon}^2 x_*^T (X^T X)^{-1} x_*$

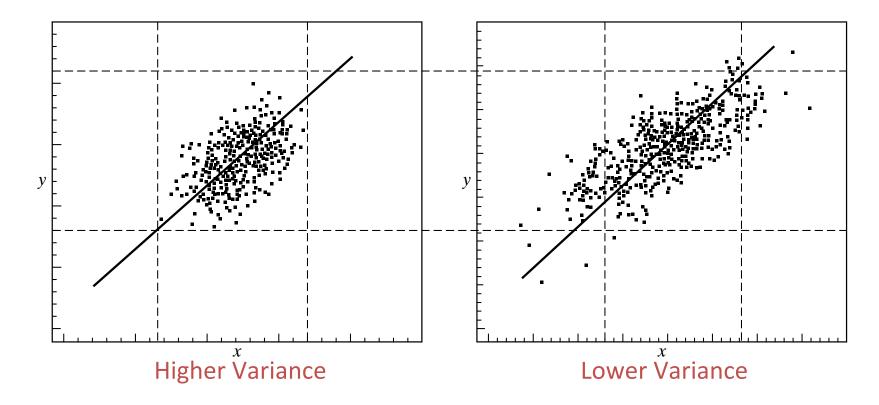


Figure from http://people.stern.nyu.edu/wgreene/MathStat/GreeneChapter4.pdf

Summary

Least-Square Regression is Unbiased:

$$\mathbf{E}_D \left[x_*^T \hat{\theta}_{\text{MLE}} \right] = x_*^T \theta$$

Variance depends on:

$$\mathbf{E}\left[\left(f(x_*|D) - \mathbf{E}\left[f(x_*|D)\right]\right)^2\right] = \sigma_{\epsilon}^2 x_*^T (X^T X)^{-1} x_*$$

$$\approx \sigma_{\epsilon}^2 \frac{p}{p}$$

- Number of data-points n
- Dimensionality p
- Not on observations Y

Deriving the final identity

Assume x_i and x_{*} are N(0,1)

$$\mathbf{E}_{X,x_*} [\text{Var.}] = \sigma_{\epsilon}^2 \mathbf{E}_{X,x_*} [x_*^T (X^T X)^{-1} x_*]$$

$$= \sigma_{\epsilon}^2 \mathbf{E}_{X,x_*} [tr(x_* x_*^T (X^T X)^{-1})]$$

$$= \sigma_{\epsilon}^2 tr(\mathbf{E}_{X,x_*} [x_* x_*^T (X^T X)^{-1}])$$

$$= \sigma_{\epsilon}^2 tr(\mathbf{E}_{x_*} [x_* x_*^T] \mathbf{E}_X [(X^T X)^{-1}])$$

$$= \frac{\sigma_{\epsilon}^2}{n} tr(\mathbf{E}_{x_*} [x_* x_*^T])$$

$$= \frac{\sigma_{\epsilon}^2}{n} p$$

Gauss-Markov Theorem

The linear model:

$$f(x_*) = x_*^T \hat{\theta}_{\text{MLE}} = x_*^T (X^T X)^{-1} X^T Y$$

has the **minimum variance** among all **unbiased** linear estimators

Note that this is linear in Y

BLUE: Best Linear Unbiased Estimator

Summary

- Introduced the Least-Square regression model
 - Maximum Likelihood: Gaussian Noise
 - Loss Function: Squared Error
 - Geometric Interpretation: Minimizing Projection
- Derived the normal equations:
 - Walked through process of constructing MLE
 - Discussed efficient computation of the MLE
- Introduced basis functions for non-linearity
 - Demonstrated issues with over-fitting
- Derived the classic bias-variance tradeoff
 - Applied to least-squares model

Additional Reading I found Helpful

- http://www.stat.cmu.edu/~roeder/stat707/ lectures.pdf
- http://people.stern.nyu.edu/wgreene/
 MathStat/GreeneChapter4.pdf
- http://www.seas.ucla.edu/~vandenbe/103/ lectures/qr.pdf
- http://www.cs.berkeley.edu/~jduchi/projects/ matrix_prop.pdf