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As we scale to increasingly parallel and distributed architectures and explore new algorithms and
machine learning techniques, the fundamental computational models and abstractions that once
separated systems and machine learning research are beginning to fail. Some of the recent advances in
machine learning have come from new systems that can apply complex models to big data problems.
Likewise, some of the recent advances in systems have exploited fundamental properties in machine
learning and analytics to reach new points in the system design space. By considering the design
of scalable learning systems from both perspectives, we can address larger problems, expose new
opportunities in algorithm and system design, and define the new fundamental computational models
and abstractions that will accelerate research in these complementary fields.

Research Summary: My research spans the design of scalable machine learning algorithms and
data-intensive systems and has introduced:

e new machine learning algorithms that leverage advances in asynchronous scheduling and
transaction processing to achieve efficient parallelization with strong guarantees

e new systems that exploit statistical properties to execute machine learning algorithms orders-
of-magnitude faster than contemporary distributed systems

e new abstractions that have redefined the boundaries between machine learning and systems.

Machine Learning: The future of machine learning hinges on our ability to learn from vast
amounts of high-dimensional data and to train the big models they support. To create scalable
machine learning algorithms that fully utilize advances in hardware and system design, I have adopted
a systems approach to machine learning research. By decomposing machine learning algorithms
into smaller parts and identifying and exploiting common patterns, I have developed new highly
scalable algorithms that leverage advances in system design and provide strong guarantees. In
my thesis, I developed, analyzed, and implemented a set of Bayesian inference algorithms that
exploit the conditional independence structure of graphical models to parallelize computation
across distributed asynchronous systems. As a postdoc, I decomposed nonparametric inference
and submodular optimization algorithms into exchangeable transactions and applied techniques in
scalable transaction processing to derive parallel algorithms with strong guarantees.

Systems: Many recent developments in large-scale system design were driven by applications
in analytics and machine learning that exposed new opportunities for parallelism, scheduling,
concurrency control, and asynchrony and led to new points in the system design space. My approach
to systems research builds on my knowledge of machine learning to identify patterns that yield
new abstractions and system design opportunities. My thesis work introduced the graph-parallel
abstraction which has served as a platform for subsequent parallel algorithms and applications, and
has become the foundation for a wide range of graph-processing systems. Building on variations of
the graph-parallel abstraction, I created the GraphLab and PowerGraph systems which leverage
fundamental properties of data to execute machine learning and graph analytics algorithms orders of
magnitude faster than contemporary data processing systems. As a postdoc, I created GraphX which
unifies data-parallel and graph-parallel systems by developing new distributed join optimizations
and new tabular representations of graph data.

Impact: From graph-parallel systems to the parameter server my research produced some of the
most widely used open-source systems for large-scale machine learning. The combination of work on
algorithms and systems led to the creation of GraphLab Inc. which has already commercialized my
research, enabling applications ranging from product targeting to cybersecurity.
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Thesis Research

Summary: My thesis work introduced algorithms, abstractions, and systems for scalable inference
in graphical models and played a key role in defining the space of parallel inference algorithms and
graph processing systems and abstractions.

Graphical Model Inference Algorithms: I developed, analyzed, and implemented a collection
of message passing |1, 2, 3] and MCMC [4] Bayesian inference algorithms that leverage the Markov
Random Field structure to efficiently utilize parallel processing resources. By asynchronously
constructing prioritized spanning trees, these algorithms expose substantial parallelism and also
accelerate convergence. The work on MCMC inference incorporated techniques in graph coloring
with new Markov blanket locking protocols to preserve ergodicity while enabling the application of
parallel resources. By abandoning the popular bulk synchronous parallel model, and envisioning a
new more asynchronous graph-centric model, I was able to design more scalable algorithms with
stronger guarantees. This early work on algorithm design laid the foundation for the design of
graph-parallel abstractions and systems and was a key factor in the broad adoption of the GraphLab
open-source project.

Abstractions: Guided by the work on parallel inference, I introduced the graph-parallel [5, 6],
gather-apply-scatter (GAS) [7], and parameter server [8] abstractions which capture the fundamental
computational and data-access patterns in a wide range of machine learning algorithms. These
abstractions isolate the design of machine learning algorithms from the challenges of large-scale
distributed asynchronous systems enabling research into algorithms and systems to proceed in
parallel. The graph-parallel and GAS abstractions, exploit common properties in graph algorithms
to expose new opportunities to leverage asynchrony and optimize communication and data-layout.
The parameter server abstraction exploits the abelian group structure and sparse parameter updates
in many machine learning algorithms to expose new opportunities for distributed caching and
aggregation. The work on graph parallel abstractions has played a key role in recent graph systems
and algorithms research and has influenced systems including GraphChi, X-Stream, and Naiad. The
simplicity and widespread applicability of the parameter server has led to its adoption in many large-
scale machine learning systems including many of the recent systems for deep learning and language
modeling. The work on abstractions reduced the complexity of machine learning algorithms to simple
computational patterns that could be analyzed for the parallelism and communication overhead and
rendered into a range of systems spanning multicore and distributed architectures.

Systems: Building on the abstractions and common properties in data, I developed the GraphLab [6]
and PowerGraph 7| systems. The GraphLab system introduced asynchronous prioritized scheduling
in conjunction with concurrency control primitives to enable efficient parallel execution of graph
algorithms while ensuring serializability. The PowerGraph system exploited the power law graph
structure and vertex-cut partitioning to efficiently compute on large real world graphs in a distributed
environment. These systems were able to achieve several orders-of-magnitude performance gains over
contemporary map-reduce systems and remain the gold standard for general purpose graph processing
systems. Through these projects, I helped lead a group of junior graduate students to develop their
research and cultivate a growing open-source community. Inspired by the wide-spread adoption of
the GraphLab open-source project and commercial interest in applications ranging from product
targeting to language modeling, I co-founded GraphLab Inc. which has successfully commercialized
these systems with customers in industries as diverse as e-commerce and defense.
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Post-doctoral Research

Summary: As a post-doc advising an exceptional group of graduate students, I adopted a database
systems perspective on the design of machine learning systems to unify graph-processing and general
purpose dataflow systems and introduce scalable transaction processing techniques to the design of
parallel machine learning algorithms.

The GraphX System: Driven by the need to support the entire graph analytics pipeline which
combines tabular pre-processing and post-processing with complex graph algorithms, I led the
development of the GraphX system [9] to unify tables and graphs. I revisited my earlier work in
the design of graph-processing systems through the lens of distributed database systems. GraphX
recast the essential patterns and optimizations in graph-processing systems as new distributed
join strategies and new techniques for incremental materialized view maintenance. Through this
alternative perspective, GraphX integrates graph computation into a general purpose distributed
dataflow system, enabling users to view data as tables or graphs without data movement or duplication
and efficiently execute graph algorithms at performance parity with specialized graph-processing
systems. GraphX is now part of Apache Spark and has been put into production at major technology
companies (e.g., Alibaba Taobao).

Transaction Processing for Machine Learning: I introduced techniques in scalable transaction
processing to the design of new parallel algorithms for nonparametric clustering and submodular
optimizations. By applying classic ideas in optimistic concurrency control to the nonparametric DP-
means clustering algorithm, I developed a parallel inference algorithm which preserves the guarantees
of the original serial algorithm [10]. Inspired by escrow techniques, which maintain bounds on the
global state, I derived a parallelization of the double greedy algorithm for non-monotone submodular
maximization which retains the original approximation guarantees [11]. One of the key contributions
of this work is to flip the design and analysis of asynchronous algorithms from “fast and sometimes
correct” to “correct and often fast”. As a consequence, this work exposes the opportunity for a new
line of approaches to parallel algorithm design and analysis.

Future Research

In addition to continuing research on the design of scalable Bayesian inference algorithms, graph-
processing systems, and transaction techniques for machine learning I plan to explore two new
directions in the design of systems for machine learning: machine learning lifecycle management and
the unification of synchronous and asynchronous abstractions.

Model Serving and Management: Machine learning and systems research have largely focused
on the design of algorithms and systems to train models at scale on static datasets. However, training
models is only a small part of the greater lifecycle of machine learning which spans training, model
serving, performance evaluation, exploration, and eventually re-training. Furthermore, in many
real-world applications there are often many models and modeling tasks which may share common
data and incorporate user level personalization (e.g., spam prediction and content filtering). This
bigger picture introduces a wide range of exciting new challenges in both the design of models and
algorithms as well as the systems needed to support each of these stages. Below I enumerate just a
few of these opportunities:
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e Low-Latency Model Serving: Serving predictions can be costly, requiring the evaluation
of complex feature functions, retrieval of user personalization information, and potentially slow
mathematical operations. Existing systems resort to pre-materialized predictions or specialized
bespoke prediction services limiting their scalability and broader adoption. I believe that we
can leverage advances in distributed query processing, caching, partial materialization, and
model approximations to enable more general purpose low-latency prediction serving.

e Hybrid Online/Offline Learning: Typically models are trained offline at fixed intervals
(e.g., every night) resulting in stale models. While online learning algorithms exist, there
is limited systems support and offline re-training can often be more efficient and improve
estimation quality (e.g., by iterating multiple times). I believe that by splitting models into
online and offline components we can achieve a compromise by enabling fast updates to rapidly
changing parameters (e.g., personalization parameters) while leveraging existing offline training
systems for slowly evolving parameters.

e Managing Multiple Models: Often there will be multiple models for the same task (e.g.,
models built by different employees). Choosing the right model and sharing training and
prediction computation across models can improve accuracy and system performance. Model
selection is often accomplished using A /B testing, however this approach is deficient as model
performance can vary across user groups and time. I believe that by applying active learning
techniques we can adaptively select the best models for different groups at different times.
This will require the development of new systems to support active learning in a low-latency
serving environment.

I have already started initial work on systems for model management and serving [12| and I believe
that answering these questions could fill a decade of exciting research and shape the future of machine
learning systems. By developing the algorithms and systems needed address the entire machine
learning lifecycle we will be able to make better use of data, incorporate predictive analytics in a
wide range of services, and enable the new highly responsive, personalized intelligent services that
will drive everything from advertising to health-care.

Hybrid Synchronous and Asynchronous Systems: Much of my early work on graph processing
systems, the parameter servers, and even transactional models for machine learning leveraged
nondeterminism and asynchrony to improve performance. Meanwhile, many contemporary data
processing systems have abandoned asynchrony, in favor of the simpler Bulk Synchronous Parallel
(BSP) execution model and the determinism it affords. This leads to the question: can we combine the
benefits of asynchronous systems and the simplicity and determinism of synchronous systems? I have
already begun [13] to explore a hybrid approach to algorithm and system design that provides more
frequent, fine-grained communication, while retaining determinism at different levels of granularity.
Building on the concept of mini-batch algorithms in machine learning, I believe their is a pattern
and corresponding abstraction that can interpolate between the extremes enabling users to choose
the level of coordination that leads to the optimal trade-off between algorithm convergence rates
and system performance. Understanding how and when to exploit non-determinism while preserving
guarantees on algorithm correctness will be a key part of managing the machine learning lifecycle
and exploiting the high-performance systems of the future.
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