2/20/20

in the Machine Learning
Lifecycle

Joseph E. Gonzalez
Co-director of the RISE Lab
IQQQDZQ @cs.berkel ev.ed

Get the latest slides
and links to literature

https:/ /tinyurl.com/isscc-lifecycle

About Me

O Co-director of the RISE Lab

O Co-founder of Turi Inc.

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

O Member of the Apache Spark PMC

O Research DeepDrive }

® Artificial Intelligence

= Data Science &
® Distributed Data Systems APACHE
® Graph Processing Systems pQr

O Idon't study processor architecture 1
= But I probably should ..
create intelligence

Outline

O History and the Co-evolution of Hardware and Al
® The Feedback Cycle driving the 3™ wave of Al

O Machine Learning is not a single workload
B Stages of the Machine Learning Lifecycle

O Security and machine learning

Along the way, I will talk about some of the research in
my group addressing interesting aspects of the lifecycle.

Hardware and the History of Al

O 1950 to 1974: Birth of AI

® 1951 Marvin Minsky builds first neural network hardware (SNARC)
O 1974 to 1980: First AI Winter

® Limited processing power and data

O 1980 to 1987: Second Wave of AI

® XCON (AI for hardware configuration) for DEC > boom in Al hardware companies
0O 1987 to 1993: Second AI Winter

m Brittle Al and the collapse of the AI Hardware Market

O 1993 to 2011: Al 2 Machine Learning
® Confluence of ideas + Compute + Big Data = Al starts to really work

O 2011 to 2019: Third Wave (Deep Learning)
m Compute + data + gbstractions - feedback cycle

oL
Compute

ooo
Feedback L
Cycle

Abstractions 4= Data & Models
O PyTorch 1 |
b3S TensorFlow

WIKIPEDIA

" The Free Encyclopedia

2/20/20

Abstractions are Enabling Innovation

O Much of machine learning before 2010
® Research focused on machine learning algorithms
® Programs written using high-level imperative languages
O Matlab/R/C++/Java
= Big abstractions: linear algebra, map-reduce, graph systems

O Today:
® Research focused on model design
= Models written in high-level DSLs
O TensorFlow/Pytorch
= Big abstractions: tensor operations, loss minimization, linear algebra, ...

O Models written in TensorFlow can now run on hardware that
didn't exist when the models were created.

How do we make NArdware s
I?

is not a single application.

Machine learning is

multiple applications with different requirements.

Inference

Training

Model Development

Identifying potential
Model Development sources of data
Joining data from

Dat Cl ing & .
o) multiple sources

ollection . Visualization
= -1
=

Addressing missing

Training & . Feature Eng. & values and outliers

Validation Model Design

Difine Plotting frends to
rainin: B . .
Bata identify anomalies

10

11

Building informative
features functions

Model Development

Designing new model

Data Cleaning & =
architectures

—-— Collection Visualization
3

- Tainng & g Fealure Eng.a | TUning fraining algos.

off Validation Model Design
ine

Training -
Data Validating prediction

accuracy

Model Development Frameworks

clo g Cleoning &
Collection Visuglization N

—
r" Qllarn " R
r6 - 1 04 Tensor!
- Training & Feature Eng. &
Validation -

offine ModeiDesion PY T b RCH Keras
Training

) up+yter @Xne %CBoost
matpl:tlib 2 Caffe2

pandas E‘@ BNumPy S‘p“ar‘"(\z D{\f‘/-_':KE

12

13

2/20/20

Model Development - Hardware

O Need to test multiple designs and hyperparameters quickly
® May be better to run many parallel experiments than one experiment faster
O Debug heavy - sources of error -> data, hyperparams., & model
m System should not be a source of error
® Avoid cutting corners (e.g., quantization, async) for increased performance
O Unless you can make a case for stable convergence ...
O Data preparation is often a bottleneck
m Opportunity for data tooling
m Accelerate data transformation and augmentation
O Emerglng Trends
Attention Models and Graph Neural Networks: reduced locality, sparsity
® Dynamic Networks: gating, cascades, mixtures,
m Increased emphasis on DNN features and Fine-Tuning
O Reuse of common architectures and weights

Dynamic Networks for fast and accurate inference

IDK Cascades: Using the fastest model possible [uarig)

Query Simple Model ’ Don’t Accurate Model
Fast Slow
Prediction Prediction

SkipNet: dynamic execution within a model [eccvig)

14 15
SkipNet: dynamic execution within a model eccva
T
—
[CVPR19]
Skipped|
Query Blocks Prediction
Baby
Large Reductions in FLOPS Skip more layers on clear images
o 19 |9 = Task Aware
g’ 5 Skip my'Té’?;Z L]‘gz—“ 8 Meta-Learner
7) b 3
ch j se%lﬁ 81H/I 44/ . . L/Ifofl_'e.actt:lg]ate ar_u::_
T 7% icient an existing
- N —]]| -
ResNet-152 ResNet-110 ResNet-74 Skip Few Layers .W. i networks
SVHN “. ‘16 I 17
16 17

Task Aware Feature Embeddings

[CVPR'1O]
Task Aware
Meta-
Task Description| Learner

“Smiling__|
Baby”

4 - 15% improvement
on attribute-object
tasks

T

Jake 04

HyperSched [SOCC'19]

Dynamically allocating parallel resources to parallel experiments.

Shallow Exploration

K |

Expxmamn Exploitation

Accuracy

E2F

Time

18

19

2/20/20

HyperSched [SOCC'19]

Shallow Exploration

GPUs
1 Atom

Dynamically allocating parallel resources to parallel experiments.

Successive Halving

—

Exploration Exploration

Exploitation

Time Time

L

HyperSched [SOCC'19]

Shallow Exploration

om-|
i
ouom

GPUs
1 Atom

Dynamically allocating parallel resources to parallel experiments.
HyperSched

Successive Halving

|

R —

]

Exploration _Gradual Explofiation

Time

oraton — Expotaion Eioron
Time Time Time
\ \
. :) N :
4 H _— ¢ g 1
g 1% Hig 1 8 -
Y2 [e gy L '
éﬁ 3 (R = et
T Tins

20

21

What is the output of
Model Development

Reports & Dashboards

What is the output of
Model Development

Reports & Dashboards

bata Cleaning & sl O O Data Cleaning & il O O
— Collection ™ Visuaiizafion — Collection ™ Visuaization -
— 1 3 -—) (insights ...) r.‘ + 3 -—) (insights ...)
r. -) S -
- Training & - Feature Eng. & T + d M d | - Training & - Feature Eng. & Trqlnlng Plpellnes
) Validation Model Design rained Mode!) Validation Model Design Pon—
Offline Offline ’
Training o Training D (
Data Data \.
| I) —
(o}
“ mmu@m@m
22 25
Trqining Training models at scale
on live data
o e
Model Development Training
) — Py
, /‘ Retraining on new data
Data Cleaning & -
F_ Collection Visualizafion o <.- I_\._ - " e et
— S — utomatically validate
I. - 1 3 ! ®. Qu@m@m I 4
) —Qu@m@m Trained prediction accuracy
Training & - Feature Eng. & L Trained Training Pipelines
o Validation Model Design Training Pipelines Models Models
ine . e
Training p— 1 = ‘t Manage model versioning
Data D'Jv'e I- Validation Live I- validation
ata Data . - .
Requires minimal expertise
in machine learning
28 29

2/20/20

Training Systems

Workflow Management:
Apache H
- % Airflow Luigt

Training Pipeli Trained
raining Pipelines Models

-
Di',?i - M ScalubleTrgining:
PYTHORCH

APACHE

drml
" Spark’)?G(Boost

Data
Engineer

Model Training > Hardware

O Fewer models to train - need distributed training of individual models
® Often train with more data

O Larger models and mini-batch sizes
= Need larger on-device memory
= Counter trends > reversable networks, optimal checkpointing, ...

O Models and hyperparameters are vetted - focus on system optimizations
= Can tolerate some system error (quantization and async.)
= Need adequate stability to meet deadlines

O Data preparation is still potentially an issue (as with model dev.)

O Need to deal with composition of multiple models

30

31

Do Bigger Models Train Faster?

(Preliminary ished work.)

O Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Do Bigger Models Train Faster?

(Preliminary ished work.)

O Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Deeper Models Reduce Error Faster
Effect of RoBERTa Depth

10 Model Depth
=3 ayert

= 6 Layers
g 12 Layers
2 ~18 Layers
S ~24 Layers
I
s
3
=
26
K

4
0 250000 500000 750000 1000000
Wall Clock (Seconds)

32

33

Do Bigger Models Train Faster?

(Preliminary work.)

O Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Deeper Models Reduce Error Faster More Resilient to Lossy Compression

Effect of RoBERTa Depth RoBERTa Pruning

10
ModelDeptn 085 /M

80 /"‘
Clngmﬂ\ Size
/4 S loyers
0 5 1

~24 Layers

MNLI Validation Accuracy

75

Validation MLM Perplexity

24 Layers
150 200

4
0 250000 500000 750000 1000000 0
Number of Parameters (Millions)

Wall Clock (Seconds)

WChECkMate [MLSys 2020]

Scaling deep learning training beyond the
GPU memory wall.

34

35

2/20/20

Efficiently trade-off RAM and Compute

RAM
PrObIem: % Keep all layers in RAM
How do we train models both efficiently \ Keep every Tlayersin RAM
and beyond memory limits? Se o
Checkmate explores T=~a - .
optimal trade-off 2@ Keep no layers in RAM
5x larger models w/ 2x cost compute
37 & crocomtest gitnin o

36

37

RAM-hungry backpropagation policy
Keep all layers in RAM

RAM-hungry backpropagation policy

Keep all layers in RAM RAM

RAM used
4
Forward Pass
g@ Keep all layers in RAM
> L
Backward Pass
Time
Compute
38 & checknateal.githb.io 39 & checknateai.githib. o
38 39
RAM-hungry backpropagation policy RAM-hungry backpropagation policy
Keep all layers in RAM Keep all layers in RAM
RAM RAM
used used
Forward Pass =y Forward Pass
0
*O*Mg ; *O*Q*g
Backward Pass f Backward Pass
Time Time
40 é checknateat githib. o M é checknatea. github. io
40 41

2/20/20

RAM-hungry backpropagation policy
Keep all layers in RAM

Compute-hungry backpropagation policy

Recompute all layers as needed, storing none

RAM
used
Peak RAM \ RAM
Forward Pass
Eg A
D OOOG
Backward Pass
2@ Recompute all layers
Compute
42 é hackaatesi githib 10 43 é checkaateat._githuh.io
42 43

Compute-hungry backpropagation policy
Recompute all layers aam
used

Peak RAM (no recomputation)

Forward Pass

Compute-hungry backpropagation policy
Recompute all layers RAM
used

Peak RAM (no recomputation)

Forward Pass

(o}
Backward Pass Backward Pass ﬁ ‘u ,
Time Time
How can we use less memory? How can we use less memory?
Free early & recompute Free early & recompute
44 & checknateal.githb.io 45 & crecamtest githo.io
44 45

Compute-hungry backpropagation policy

Recompute all layers

RAM
used
Peak RAM (no recomputation)

Forward Pass

Backward Pass

Time

How can we use less memory?
Free early & recompute
46

é checknateal. github. 1o

Compute-hungry backpropagation policy
Recompute all layers RAM
used

Peak RAM (no recomputation)

Forward Pass

Backward Pass

Time

How can we use less memory?
Free early & recompute

47 é checknateal. github. io

46

47

2/20/20

Compute-hungry backpropagation policy Prior heuristic as an intermediate trade-off point
Recompute all layers RAm
d
“5 Peak RAM (no recomputation) RAM

A
Forward Pass

->y II DE.
VA VB vc D VE

Backward Pass

Keep every 7 layers in RAM
| Peak RAM _ _——— B T Chen et al (2016)
0-0-6—-2

Time

How can we use less memory?

—» Compute
Free early & recompute

48 é checnateal github. 1o 49 é checknateai. github. o
48 49
How to trade-off RAM for compute optimally? Why do fixed heuristics perform poorly?
Challenges:

1. Latency is not constant between layers

1. Variable 1 RAM 10°% compute gap between biggest and smallest layer in VGG19
Checkpoint
runtime per layer % every node
\ &
2. Variable RAM ~
~
usage per layer S~ o

1 x108

== = ¢+ Recompute Il iiiee==
all layers JIl

3. Real DNNs are Compute 7

non-linear
50 & checknateal.githb.io 51 t & crecamtest githo.io

50 51

Why do fixed heuristics perform poorly? Why do fixed heuristics perform poorly?

2. Tensors are not all the same size [3. Real DNN architectures are non-linear]

DenseNet-201 has large variability in activation sizes between layers

Feature memory profile

4 MB
x103
0MB
Operation
52 é checknatea. github. io 53 e é checknateai. github. 1o
52 53

2/20/20

Checkmate

A system for optimal tensor rematerialization
Profile layers
« Statically optimize graph once (10s to 1hr)
* Train optimized graph for weeks l
+ Checkmate composed of 3 parts:
« Profiling: hardware/RAM aware schedules
« |nteger LP: enables finding optimal schedule 1
« TE2.0 graph pass: support TPU, GPU, CPU

Solve integer LP

Rewrite TF2.0 graph

é checknateal.github. i

Variance Reduction for Quantized Training

(Preliminary ved work.)
Input

Jianfei Chen (Postdoc)

O Quantized weights, activations, and gradients
O Studying uniform stochastic rounding

= Prove gradient is unbiased

= hardware support needed...

Consequence:
Quantization preserves “correctness” of SGD
- Does affect convergence rate

O Analyze Variance
® 1 less bit > 2x increase in stdev of gradient estimates
O 4x increase in batch size to recover convergence rates o1

O Studying variance reduction mechanism
® developing quantization preconditioners

54

55

e o
Model Development Training
Data Cleaning &
—-— Collection Visualization > a
— - - N,
— ‘ ——— Q=)
- Training & Feature Eng. & '-,-.-,- Trained
Validation - Model Design Training Pipelines Models
Offline
Training a—)
Data Dtgi ri Validation

Training Inference

|
1
° | Prediction Service
— |
—el |- 5(}-» Vo o | o
—Cm— == -‘0 Logic <> —
mOu@m@m Treined - p yJ Prediction ave
Applicafion

Models
Feedback J

— '
Live r"’
Data - Validation 4

Training Pipelines

62

63

Inference

Prediction Service
~ Q0O o =2 mE
’ o=

Logic <> o l

Prediction L :

- B)_. ’ et End User

Application
Feedback .. .
; Goal: make predictions in

~10ms under heavy load

Complicated by Deep Neural Networks
= New and Systems

Inference is multiple Applications.

Prediction Service

BRI b
tode <> Predlchon

- K}. ’ End User
Application
Feedback '

The Cloud

The “Edge” Mobile Devices

64

65

2/20/20

The Cloud The “Edge” Mobile Devices
(=

=

T%?Z?Pe%f Latency Oriented

Variable Load Predictable Load

Budget Power Energy

Inference in S =9
Deep Learning B e
Models
W,M'.(...""“”':::‘:“" [1]

> Compute intensive £ b T
» Less memory intensive ? o Wm Y o, e

than training P v ’

i

o T oo 0w

] 5 10 15 2 2
Operations [G-FLOPs]

66

68

Inference in
Deep Learning
Models FPS 51000 5350 5125 5625 510 »I5 55 =S

m ST e s e e

TitanXP

> Compute intensive

> Less memory intensive
than fraining

» Latency vs throughput tradeoff
determined by batch size and
hardware
» Increase batch size

» Increase throughput ©
» Increase latency ®

69

Batch Size. 1 2
ResNet-152

Throughput (Images/Sec.)
350

300

250

200

150

100

o 1
0

12 4 8 16 32 64

4 8 16 32 64

1431 736 468 [1383777350 133003171

Latency (ms)
250

200

150
100
: |
o mw m u N I
12 4 8

16 32 64

70

Sentences/Second

BERT-Large on a V100 (~$10K)

€00 623 1555

&
[
Latency (ms)

400 /407

239

1 10 100 1000
Batch Size

Batch Size

Results included Mixed precision opfimizations!

Numbers obtained from: Ritps//d lopernvidig.com/deep-legming-performgnce-trgining-inferen

1000

Google Translate

Serving

Google

°

140 billion words a day'

82,000 GPUs
running 24/7

Google's Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

fng Chen, Quoc V. Le, Mobas

Yonghu Wa, M
yong

o D

“If each of the world’s Android phones
used the new Google voice search for just
three minutes a day, ihese engineers
realized, the company would

need twice as many data centers.”
- Wired

Designed New Hardware!

Tensor Processing Unit (TPU)

71

72

10

https://arxiv.org/pdf/1810.00736.pdf
https://arxiv.org/pdf/1810.00736.pdf
https://arxiv.org/pdf/1810.00736.pdf
https://developer.nvidia.com/deep-learning-performance-training-inference

2/20/20

mple API
nter (Window=300s)

Other Challenges? 0 M

> Bursty load >
> overprovision resources >
> expensive
» TPU reports 28% utilization of s
vector units in production PG ARG ARG At
» Solutions Pacific Time
> statistical multiplexing = hardware not designed for multitenancy
» could try to predict arival process - generally difficult to predict

&
s

> Versioning and testing models
> Prediction pipelines > more on this soon

Inference

Big Model

Two Approaches

Application

\ » Offline: Pre-Materialize Predictions \

» Online: Compute Predictions on the fly

73

74

Pre-materialized Predictions Pre-materialized Predictions
Training ; Inference Training
i Prediction Service
e SEIIR % -L "5?"’33'_\ | e ._.<. - - - Batch Training
DT m e T e e
Training Pipelines Models | — p‘ Ap’;ﬁc(;?(r)n .-.-.-.- Trained
— ' I 1 J Training Pipelines Models
Live [fm— Validation | Feedback —-— -
Data ri _— ¢ Live Ii' Validation ,
Data All Possibl
. gDo'o‘ . DOVGA
ngineer ngineer
75 76
Pre-materialized Predictions Data Pre-materialized Predictions -
ara
. Management Training ...
hining o System g (spark) Meresemenytem
Spark - i
- 5 =S - Y W — |
O=@m@= Corng,
N = x | v . Tioined
o= ' T —
blines ;ﬂgzﬁ DL(;V': Fﬁ Validation m
B —— L (s J
Validation R | |
veries (Myso Standard Data Eng. Tools
77 78

2/20/20

Serving Pre-materialized Predictions
Data
Management System
> IR m— | =
(Scoring) 7-
‘ Application
L [mgsi) pplication
|
Low-Latency Serving

Serving Pre-materialized Predictions

Advantages:

» Leverage existing data serving and
model training infrastructure
» Batch processing improves hardware perf.
» Indexing support for complex queries
» Find all Pr(“cute”) dresses where price < $20
» More predictable performance

79

80

Serving Pre-materialized Predictions

Problems:

» Requires full set of queries ahead of time
» Small and bounded input domain

» Requires substantial computation and space
» Example: scoring all content for all customers!

» Costly update 2 rescore everything!

—1
Inference §Q> m o=
|
Big Model m
Application

Two Approaches

\ > Offline: Pre-Materialize Predictions \

» Online: Compute Predictions on the fly

81

82

—
Inference @ w o=
—_J |
Big Model m
Application

Two Approaches
» Offline: Pre-Materialize Predictions
\ » Online: Compute Predictions on the fly \

Prediction Services

Prediction Service

’ Queﬁ .-

||
—

Prediction

End User
Application

Feedback '

Specialized systems which render
predictions at query time.

83

84

2/20/20

Architecture of a Prediction Service
Edge | Cloud

Application Services | | Data
Services

Load balancer

Online: Compute Predictions at Query Time

» Examples
» Signals processing: speech recognition & image tagging
» Ad-targeting based on search terms, available ads, user features

» Advantages
» Compute only necessary queries
» Enables models to be changed rapidly (e.g., bandit exploration)
» Queries do not need to be from small ground set

> Disadvantages
» Increases complexity and computation overhead of serving system
» Requires low and predictable latency from models

85 86
. . Prediction Serving > Hardware
Active Area of Research in my Group
O Inference requires less memory - focus on compute
" L . . . A O Greater emphasis on latency instead of throughput
[(i!gﬁ);—:ir Prediction Serving System l[U.IsgflrgﬁeTFe“ne Provisioning System = Focus on small batch inference (batch size = 1)
e = o, ! o B Opportunity to exploit pipeline parallelism
[I elpiien oo l‘""“m‘ | L°W F'eéui"iv Planner | High-Frequency Tuner ® Need high availability - esp. in mission critical settings
I — o O Often runs multiple concurrent prediction tasks
Model SelectonPolcy _ | MODELSELECTON LAYER | £2 B Cloud > Multitenancy - Performance isolation
'MODEL ABSTRACTION ﬁ B Edge - supporting multiple data streams
Adopiive Batching) = O Tolerate model compression and quantization
Jrec _ 17 o B As low as 4-bit activations and weights
=
P O Bursty load
B Statistical multiplexing
®m Use inference hardware for background training?
87 88
Machine Learning Lifecycle ey | e | S
St it -3 0= 0 [e
-t L o= o=
ini Voot oot S Aopicaton
Model Development | Training | Inference
| "EC""EO‘\ K
=\ oS e bato bato Dot
- 0N = Sc\emmg E"gmncvg E/\gmccrg
roodback
2@ e R S ’.I. 2
ecuritys
89 90

13

2/20/20

Protect the data, the model, and the query

QOur recent work in secure ML

High-Value Data is Sensitive ~Models capture value in data O Coopetitive Learning
. aqgue | ovivious spark Helen| ;S ;
« Medical Info. « Core Asset P ﬂmw] oversex sem19) grsi'%‘:ﬁivcgpmgmph'c
» Home video » “Contain”
N - Finance the data SQL | | ML | Graph
" Opaque T
Queries can be as sensitive as the data HH
Catalyst @
Spark Execution
91 92
Security and Hardware Conclusion
O Improved Access to Data O History: Al and Computer Systems have Co-evolved
m User willing to share data with models but not companies (people) . :
m Differential Privacy can increase data sharing incentives o Fee_dbaCk WCIe' _Har(_jware’ Abst.ractlons, _and Pata
O Better isolation of co-tenant models on hardware accelerators O MLis many AppllcatlonS: Machine Learn’ng L/feCyC/e
O Coopetitive Learning: Secure multiparty computation for ML B Model Development: Exploration
m Example: Competing banks collaborate to construct a shared fraud model B Training: Scale and Composition
without sharing data.)
O Models have access to more sensitive inputs ® Inference: Cloud - Edge Spectrum
m Example: Alexa could see where you are when asking to turn on a light. O Security: Opportunity for hardware innovation in Al
Thank you!
93 94
93 94

14

