in the Machine Learning
Lifecycle

Joseph E. Gonzalez
Co-director of the RISE Lab

jegonzal@cs.berkeley.edu

Get the latest slides
and links to literature

' =
|_|_.._
o R

[=]

T

[=]

=
I.I rln

LU

https:/ /tinyurl.com/isscc-lifecycle

About Me

[0 Co-director of the RISE Lab

[0 Co-founder of Turi Inc.

[0 Member of the Apache Spark PMC

[0 Research

Artificial Intelligence

Data Science

Distributed Data Systems
Graph Processing Systems

[0 I don’t study processor architecture

But I probably should ...

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

DeepDrive *

. 4

SEETKE

turs yx

create intelligence™

Outline

History and the Co-evolution of Hardware and Al
B The Feedback Cycle driving the 37 wave of Al

Machine Learning is not a single workload
B Stages of the Machine Learning Lifecycle

Security and machine learning

Along the way, I will talk about some of the research in
my group addressing interesting aspects of the lifecycle.

Hardware and the History of Al

[0 1950 to 1974: Birth of Al
B 1951 Marvin Minsky builds first neural network hardware (SNARC)

O 1974 to 1980: First AI Winter
B Limited processing power and data

0 1980 to 1987: Second Wave of Al
m XCON (Al for hardware configuration) for DEC - boom in Al hardware companies

O 1987 to 1993: Second AI Winter
B Brittle Al and the collapse of the AI Hardware Market

O 1993 to 2011: Al = Machine Learning
B Confluence of ideas + Compute + Big Data > Al starts to really work

0 2011 to 2019: Third Wave (Deep Learning)

B Compute + data + abstractions > feedback cycle

Feedback
Cycle

Single Senten

Abstractions ¢ssssm Datg & Mod

O PyTorch T gl
R St WIKIPEDIA
TensorFlow | - TheFree Encycl;)pedia

Abstractions are Enabling Innovation

[0 Much of machine learning before 2010
B Research focused on machine learning algorithms
B Programs written using high-level imperative languages
0 Matlab/R/C++/Java
B Big abstractions: linear algebra, map-reduce, graph systems

0 Today:

B Research focused on model design

B Models written in high-level DSLs
[0 TensorFlow/Pytorch

B Big abstractions: tensor operations, loss minimization, linear algebra, ...

O Models written in TensorFlow can now run on hardware that
didn’t exist when the models were created.

How do we make NArAWare sor
Machine learning?

Machine learning
IS not a single application.

Machine learning is

multiple applications with different requirements.

Model Development

Data Cleaning &
Collection Visualization

Training & . Feature Eng. &
Validation Model Design

Data

Training Inference
° Prediction Service

P 4 - Query
@) - -) ———
—G— N ;C B: ‘O
m@u@m@m R y Prediction
Training Pipelin Models K)‘
- t
rﬁ Validation Feedback '

Machine Learning Lifecycle

| o

End User
Application

Model Development

Data Cleaning &
—

Collection Visualization
I ! 1

—
Offline

Training
Data

Training & « Feature Eng. &
Validation Model Design

Identifying potential
sources of data

Joining data from
multiple sources

Addressing missing
values and outliers

Plotting trends to
identify anomalies

Model Development

Data Cleaning &
—

Collection Visualization
I ! g

Training & « Feature Eng. &
Validation Model Design
Offline
Training
Data

Building informative
features functions

Designing new model
architectures

Tuning training algos.

Validating prediction
accuracy

Model Development Frameworks

Data Cleaning &

r.‘ Collection Visualization " V ot ? R
Training & Feature Eng. & o
Offine Validation « Model Design P Y T b R C H Ke ras

Training

dmlc

Data ::. Jupyter @Xl’let XGBOOSt
matpl«tlib © Caffe?

pandas il ApAchcl\Z
pences i @romey S Spark DASK!E

Model Development > Hardware

[0 Need to test multiple designs and hyperparameters quickly
B May be better to run many parallel experiments than one experiment faster

[0 Debug heavy - sources of error 2 data, hyperparams., & model
B System should not be a source of error
B Avoid cutting corners (e.g., quantization, async) for increased performance
[0 Unless you can make a case for stable convergence ...
[0 Data preparation is often a bottleneck
B Opportunity for data tooling
B Accelerate data transformation and augmentation

[0 Emerging Trends
B Attention Models and Graph Neural Networks: reduced locality, sparsity
B Dynamic Networks: gating, cascades, mixtures, ...

B Increased emphasis on DNN features and Fine-Tuning
[0 Reuse of common architectures and weights

Dynamic Networks for fast and accurate inference

IDK Cascades: Using the fastest model possible [UAIr18]

Query ——Slanlell= Mlelel=)

Prediction

[Don't s Accurate Model
Know
Slow

Prediction

SkipNet: dynamic execution within a model [eccvig

Query

Skipped
Blocks Prediction

15

FLOPs(1e8)

SkipNet: dynamic execution within a model [eccvig

Large Reductions in FLOPS
4

w

N

R N

o

ResNet-152

Query

I 86%

B No Gate
B SkipNet+SP
SkipNet+SP+HRL

— [5T%

81% _[34%]
' ‘ | 77%

ResNet-110 ResNet-74

SVHN

Skipped

Blocks Prediction

Skip more layers on clear images

. Easy Images "]L&EL;
Skio Many Layers | ¢ 9 6 '

|
Hard Images . xn.n-

Skip Few Layers “..))

16

Task Aware Feature Embeddings
[CVPR'19]

Baby

Task Aware
Meta-Learner

More accurate and
efficient than existing
dynamic pruning
networks

17

Task Aware Feature Embeddings
[CVPR'19]

Yes

Task Aware
Meta-
Task Description| Learner
"Smiling 4 - 15% improvement
Baby” on attribute-object
tasks

18

HyperSched [SOCC'19]

Dynamically allocating parallel resources to parallel experiments.

Shallow Exploration

GPUs
1 Atom

Exploration Exploitation
>

Time

i

Time

Accuracy

HyperSched [SOCC'19]

Dynamically allocating parallel resources to parallel experiments.

Shallow Exploration Successive Halving

GPUs
1 Atom
1 Atom

Exploration Exploitation Exploration
>

>

Time

. =
pr | s

Time

Accuracy

N

Accuracy

Time Time

HyperSched [SOCC'19]

Dynamically allocating parallel resources to parallel experiments.

Shallow Exploration Successive Halving HyperSched

GPUs
1 Atom
1 Atom

1 Atom

Exploration Exploration Gradual Exploitation
-

> Time

Exploration Exploitation

>

Time Time

Accuracy

Accuracy

Accuracy

|
|
|
[
|
1
4

Time

=1

What is the output of
Model Development

Data Cleaning &
Collection Visualization

2

Training & « Feature Eng. &
Validation Model Design

—
>
-
Offline

Training
Data

Reports & Dashboards

I ||
||II il =

‘roduet, siste

(insights ...)

Trained Model

=C
0

22

What is the output of
Model Development

Data Cleaning &
A Collection Visualization

i
= $
- Training & - Feature Eng. &
Validation Model Design
Offline
Training
Data

Reports & Dashboards

't ill £
amac0e -
I THM™ I “a

(insights ...)

Training Pipelines
@
) ’
N

Model Development Training

Data Cleaning & @
— Collection Visualization ’
> - — \
ar ‘ r— VS
m@m@m@m
- Training & . Feature Eng. & . . . Trained
Validation Model Design Training Pipelines Models

Offline

Training — t
bata Live I Validation
Data

Training

m@u@m@s
Training Pipelines

L)

< >
Live

Data Validation

‘=

;’

.

Trained
Models

Training models at scale
on live data

Retraining on new data

Automatically validate
prediction accuracy

Manage model versioning

Requires minimal expertise
IN machine learning

Training Systems

Workflow Management:

o_’<‘ Apache
—— Airflow
m@u@m@Pm .

. . Trained
Training Pipelines Models

Live
Data

a—
I- Validation
- Scalable Training:
Data

‘ .
Enai
nglneerA f .

Tensorflow

APACHE dm/C

 SparK” XGBoost

Model Training - Hardware

[0 Fewer models to train > need distributed training of individual models
B Often train with more data

[0 Larger models and mini-batch sizes
B Need larger on-device memory
m Counter trends - reversable networks, optimal checkpointing, ...
[0 Models and hyperparameters are vetted = focus on system optimizations
B Can tolerate some system error (quantization and async.)
B Need adequate stability to meet deadlines
[0 Data preparation is still potentially an issue (as with model dev.)

[0 Need to deal with composition of multiple models

Do Bigger Models Train Faster?

(Preliminary unpublished work.)

[0 Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Do Bigger Models Train Faster?

(Preliminary unpublished work.)

[0 Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Deeper Models Reduce Error Faster

Effect of RoBERTa Depth
10- Model Depth
—3 Layers
= —6 Layers
'5 —12 Layers
= —18 Layers
o 8- —24 Layers
o
=
—
=
S
..'C:U 6
R
©
>
4.

0 250000 500000 750000 1000000
Wall Clock (Seconds)

Do Bigger Models Train Faster?

(Preliminary unpublished work.)

[0 Studying pre-training of large Transformer Models for NLP task (e.g., BERT)

Deeper Models Reduce Error Faster More Resilient to Lossy Compression
| Effect of RoBERTa Depth | | - RoBERTa Pruning
10- Model Depth .
—3 Layers
= —6 Layers >
B —12 Layers ©
= —;2 Ianers =
o 8- —24 Layers <‘,:’
= S
- —
= S
| o= —_
(@) (3°]
= 6- = Original Size
o — -=3 Layers
= = --6 Layers
= = 75 -e-12 Layers
- 18 Layers
4 _ a 24 Layers
0 250000 500000 750000 1000000 0 50 100 150 200

Wall Clock (Seconds) Number of Parameters (Millions)

ﬂ’Chec kMate [MLSys 2020]

Scaling deep learning training beyond the
GPU memory wall.

Problem:

How do we train models both efficiently
and beyond memory limits?

Efficiently trade-off RAM and Compute
RAM

% Keep all layers in RAM

Keep every +/n layers in RAM
Chen et al (2016)

Checkmate explores i R

optimal trade-off
5x larger models w/ 2x cost

= Keep no layers in RAM

Compute

A
37 checkmateai.github.io

RAM-hungry backpropagation policy
Keep all layers in RAM

RAM

g@ Keep all layers in RAM

38

Compute

checkmateai.github.io

RAM-hungry backpropagation policy

K Il in RAM
eep all layers in v

used
A

Forward Pass

= | abel

Backward Pass

Time

A
39 checkmateai.github.io

RAM-hungry backpropagation policy

Keep all layers in RAM .

used

Forward Pass

Backward Pass

Time

A
40 checkmateai.github.io

RAM-hungry backpropagation policy

K Il | in RAM
eep all layers in v

used

Forward Pass

Backward Pass

Time

A
41 checkmateai.github.io

RAM-hungry backpropagation policy
Keep all layers in RAM

Forward Pass

Backward Pass

A
42 checkmateai.github.io

Compute-hungry backpropagation policy

Recompute all layers as needed, storing none

RAM

43

Recompute all layers
Compute

checkmateai.github.io

Compute-hungry backpropagation policy

Recompute all layers
RAM

used
4 Peak RAM (no recomputation)

Forward Pass

Backward Pass

Time

How can we use less memory?
Free early & recompute
44 checkmateai.github.io

Compute-hungry backpropagation policy

Recompute all layers
RAM

used
4 Peak RAM (no recomputation)

Forward Pass

Backward Pass

Time

How can we use less memory?
Free early & recompute

45 00) checkmateai.github.io

B

Compute-hungry backpropagation policy

Recompute all layers
RAM

used
4 Peak RAM (no recomputation)

Forward Pass

Backward Pass

Time

How can we use less memory?
Free early & recompute

46 00) checkmateai.github.io

B

Compute-hungry backpropagation policy

Recompute all layers
RAM

used
4 Peak RAM (no recomputation)

Forward Pass

Backward Pass

How can we use less memory?
Free early & recompute
47 checkmateai.github.io

Compute-hungry backpropagation policy

Recompute all layers

RAM
used

4 Peak RAM (no recomputation)

Forward Pass

Backward Pass

How can we use less memory?
Free early & recompute
48 checkmateai.github.io

Prior heuristic as an intermediate trade-off point

RAM

Keep every +/n layers in RAM
Chen et al (2016)

Compute

49 checkmateai.github.io

How to trade-off RAM for compute optimally?

Challenges:
4) A RAM
1. Variable _
i Checkpoint
\runtlme per layer) % every node
R . \ &3
2. Variable RAM ~ -
usage per layer -~
. gep y J o~ - Recompute
all layers

(N
3. Real DNNs are
knon-linear

Compute

50

B

checkmateai.github.io

Why do fixed heuristics perform poorly?

()
1. Latency is not constant between layers
10%x compute gap between biggest and smallest layer in VGG19
U J
51 checkmateai.github.io

Why do fixed heuristics perform poorly?

r N
2. Tensors are not all the same size

DenseNet-201 has large variability in activation sizes between layers
G J

Feature memory profile

4 MB

2 MB |

|

x103

0 MB

Operation

A
52 Data from https://github.com/albanie/convnet-burden/blob/master/reports/densenet201.md checkmateai.github.io

Why do fixed heuristics perform poorly?

3. Real DNN architectures are non-linear

\(3x3 conv, 64 \\
4

—Y
| 3x3conv, 64 /\

64 64

pool/2
v

128 64 64 2

input
image
tile

output
segmentation
map

+

3x3 conv, 256

i

L4
A/

390x300 ¥
a8y ¥
388x38s W

392 x 392

572 x 572
570 x 570
568 x 568

' 128 128
256 128

3x3 conv, 5

) !
3x3 conv, 512

pool/2
v

3x3 conv, 512

Q ~
oo — o
i

002

284
2822

¥ o2 25 512 256 t

o | (>
)
»
-

o
<
-

136 '

Nl = “NI'EI =» conv 3x3, ReLU
o
copy and cro
512 512 1024 o Py p

¥
e 3 - § max pool 2x2
S 3 ¥ S &

1024 g5 B 4 up-conv 2x2

3x3 conv, 512 £y T — = conv 1x1

pool/2

i U-Net: 11k citations DenseNet: 7k citations
7

fc 4096

5 3 fc 4096

68

A
checkmateai.github.io

Checkmate

A system for optimal tensor rematerialization

Profile layers
 Statically optimize graph once (10s to 1hr) l

 Train optimized graph for weeks

* Checkmate composed of 3 parts: Solve integer LP

 Profiling: hardware/RAM aware schedules l

 Integer LP: enables finding optimal schedule

« TF2.0 graph pass: support TPU, GPU, CPU

Rewrite TF2.0 graph

checkmateai.github.io

Variance Reduction for Quantized Training

(Preliminary unpublished work.)
Input

Jianfei Chen (Postdoc)

[0 Quantized weights, activations, and gradients

[0 Studying uniform stochastic rounding
B Prove gradient is unbiased
B hardware support needed...

Gradient

Consequence: g Gradient

Quantization preserves “correctness” of SGD
- Does affect convergence rate

Linear

0 Analyze Variance

B 1 less bit > 2x increase in stdev of gradient estimates
[0 4x increase in batch size to recover convergence rates Output

[0 Studying variance reduction mechanism
B developing quantization preconditioners

Model Development Training

Data Cleaning & @
> Collection Visualization ’
— - =0
S ‘ r—
m@u@m@
- Training & « Feature Eng. & . . . Trained
Validation Model Design Training Pipelines Models

Offline

Training — t
bata Live I Validation
Data

Training

SO

o_\‘—)
m@u@m@s

Training Pipelines

a—)

Trained
Models

Prediction Service

‘3:}‘3:}\
- 3:}1

Inference
Query
oo <> Prediction

e I- Validation , Feedback '
Data

1
/1

End User
Application

Inference

o Y
Prediction Service
= Bi}ﬂ EC}\ —_—
Logic Ee—— A 4
- p, Prediction L=———
B:D. End User
Application

Feedback . e .
_J Goal: make predictions In

~10ms under heavy load

Complicated by Deep Neural Networks
= New and Systems

Inference is multiple Applications.

Prediction Service

= BC}-' Bi}\ —_—
Logic — =
Prediction E——

- B:D. ’ End User
Application
Feedback '

The Cloud The “Edge” Mobile Devices

A

The Cloud The “Edge” Mobile Devices

yris

Throughput ,
Oriented Latency Oriented
Variable Load Predictable Load

Budget Power Energy

66

Nnference In

Deep Learning
Models

» Compute intensive

> Less memory intensive
than training

Top-1 accuracy [%]

Benchmark Analysis of Representative NASNet-A-Large
Deep Neural Network Architectures
SE-ResNeXt-101(32x4d)
80 ‘ Irtlpeptign-ResNet-VZ SENati154
1 . . eption-v et-
SE-ResNeXt-50(32x4d) Xception P3thNGt. IPathNet-131
SE-ResNet- ([Q}lzesNeMsz eXt-101(64x4d)
SE-ResNets80 _ Inception-v3 ‘ Xt-101(32x‘ Sohet-132
DenseNet-201@) @BenseNet-161 resnet-101 ResNet-152
® Oresnets0 ‘Caffe'ReSNet-1°1 VGG-19_BN
75 DualPathNet-68 DenseNet-169 VGG-16_BN
DenseNet-121
® NASNet-A-Mobile
BN-Incaion (@ ResNet-34 VGG-13_BN
@ MobileNet-v2 VGG-11_BN
VGG-19
70 - ResNet-18 .
0 o © VGG-16
MobileNet-v1
VGG-13
P ShuffleNet VGG-11
.GoogLeNet
/ /
// /)
Y y
1M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0
‘AIexNet
55 T T T T
0 5 10 15 20 25

Operations [G-FLOPs]

0o

https://arxiv.org/pdf/1810.00736.pdf

Benchmark Analysis of Representative DNN 1 2 4 8 16 32 04
Deep Neural Network Architectures AlexNet

* . BN-Inception
nference in TianXP ettt

DenseNet-169 (k=32)

Deep Learning e

DPN-68

DPN-98

M | FPS >1000 >250 >125 >62.5 >30 >15 >5 <=5 DPN-131
odels T DB FBResNetIs2

ms <l <4 <8 <16 <33 <66 <200 >=200 GoogLeNet

Inception-ResNet-v2

Inception-v3

° PY Inception-v4

» Compute intensive MobieNet1
NASNet-A-Large 1849 18.11 17.73 17.77

NASNet-A-Mobile

s s ResNet-101

» Less memory intensive
o . ResNet-18

ResNet-34

than fraining
ResNeXt-101 (32x4d)

ResNeXt-101 (64x4d)

> Latency vs throughput fradeoff

SE-ResNet-152

determined by batch size and SB ResNeXe 101 Bovkd

SE-ResNeXt-50 (32x4d)

SENet-154 13.27 10.45 941
hardware SN o4

o SqueezeNet-v1.0
> Increase baich size SoueraNet 1.
VGG-11_BN

» Increase throughput © VG613

VGG-13_BN

> Increase latency ® VGGL16. BN

VGG-19
VGG-19_BN
Xception

https://arxiv.org/pdf/1810.00736.pdf

Batch Size. 1 2 4 8 16 32 64
ResNet-152 | 14.31 | 7.36 4.68 3833500330307

Throughput (Images/Sec.) Latency (ms)
350 250

300 200

250
150 100

100
50

50 I
0 0
1 2 VYGG-k

16 32 64

— N
N
~
o N

https://arxiv.org/pdf/1810.00736.pdf

Sentences/Second

BERT-Large on a V100 (~$10K)

900

800 823
/00

600 ~ 36

500

400 407

300

200 239

100

] 10 100 1000
Batch Size

Results included Mixed precision optimizations!

Latency (ms)

180
160
140
120
100
80
60
40
20

155.5

12.6

10 100 1000
Batch Size

Numlbers obtained from: https://developer.nvidia.com/deep-learning-performance-fraining-inference

https://developer.nvidia.com/deep-learning-performance-training-inference

Google’s Neural Machine Translation System: Bridging the Gap
between Human and Machine Translation

G O O I (E] ‘ O ‘ ’ S I O T(E Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
yonghui,schuster,zhifengc,qvl,mnorouzi@google.com

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, f.ukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa,
Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean

Serving
“If each of the world’s Android phones
Fonge #08 used the new Google voice search for just

fransiate et | O three minutes a day, these engineers
realized, the company would

140 billion words a day' nsvc_eddfwice as many data centers.”
— Wire

\) 0/5000

32,000 GPUs Designed New Hardware!
running 24/7 Tensor Processing Unit (TPU)

72

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Using statuses/sample API
Mean QPS Per Twitter DataCenter (Window=300s)

w
(6]

—— Asia

Other Challengese

w
o

o 25
> Bursty load - i-éizo
» OVEerprovision resources -2 & 15
> expensive 10
» TPU reports 28% utilization of 5
vector units in prOd uction o> \’Z%,\,"‘ X:%,xb‘lz%,\ﬁ 02%,\,5 QZ%,\? 0:%,@ QZ%,@ \’1%,\,6 v
> Solutions Pacific Time

> statistical multiplexing - hardware not designed for multitenancy
» could try to predict arrival process =2 generally difficult to predict

» Versioning and testing models

> Prediction pipelines > more on this soon

73

Inference @ m

Big Model 4

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Pre-materialized Predictions

Training Inference
° Prediction Service
—
—e” o ;Q.. 3:}\ —
Logic —T I
.-,-.-.- Trained - ’ Fredietion End User
Training Pipelines Models Application
— t
Live Ii Validation Feedback ,
Data |

Data Data

Engineer‘ Engineerx

Pre-materialized Predictions

Training (855 "\3]

- Batch Training
Framework

i B Trained
raining Pipelines Models t

O | e
Validation .
I- c All Possible
Queries

Live
Data

76

Pre-materialized Predictions Dato

o Management
aining System
Batch Training
-) = Framework _ X Y
@m (Scoring)
i Trained
clines Models '

validation All Possible :
Queries

(mysac

Pre-materialized Predictions

Data
Management System

Batch Training
% - Framework _ X Y

Training

(Scoring)
- o Trained

Training Pipelines Models t

J—" —~ —
Live [Validation
Data I- All Possible ‘

Queries
MySsoll

Standard Data Eng. Tools

78

Serving Pre-materialized Predictions

Data
{Squ”g} Management System
Sehel s w
- _
(Scoring)
I == -
All Possible ' . .
Queries [M SQLJ AppI|Cat|On

\9_'_’

Low-Latency Serving -

Serving Pre-materialized Predictions

Advantages:

» Leverage existing data serving and
model training infrastructure

» Batch processing improves hardware pert.
» Indexing support for complex queries

» Find all dresses where price < $20
» More predictable performance

Serving Pre-materialized Predictions

Problems:
» Requires full set of queries ahead of fime
» Small and bounded input domain

» Requires substantial computation and space
» Example: scoring all content for all customers!

» Costly update - rescore everything!

Inference @ m

Big Model 4

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Inference @ m

Big Model 4

Application

Two Approaches
» Offline: Pre-Materialize Predictions
» Online: Compute Predictions on the fly

Prediction Services

Prediction Service

- ;C}ﬂ EC}\ —_——
Logic N —
Prediction [E=———

- B:D. 4 End User
Application

_ J
Feedback '

Specialized systems which render
predictions at query time.

Arc:hi’rec;’rure of a Prediction Service

Edge Cloud

Application Services / Data
Services

‘ Prediction

Service

Online: Compute Predictions at Query Time

> Examples
> Signals processing. speech recognition & image tagging
» Ad-targeting based on search terms, available ads, user features

» Advantages
» Compute only necessary queries
» Enables models to be changed rapidly (e.g., bandit exploration)
» Queries do not need to be from small ground set

» Disadvantages
> Increases complexity and computation overhead of serving system
» Requires low and predictable latency from models

Active Area of Research in my Group

Clipper Prediction Serving System

INSDI'17]
Cci/riryi)grtuer Reirc));ict?on Recorcnonr:teer:itation APPLICATIONS
| REST API |

Model Selection Policy MODEL SELECTION LAYER Ic:J
]
Caching MODEL ABSTRACTION %
Adaptive Batching LAYER -

Jrec Jrec IR°C \cHIE

Model Container Model Container Model Container LEARNING
Spark Frensor @ Cearn | FRAMEWORKS

InferLine Pipeline Provisioning System
[Under review]

Low-Frequency Planner High-Frequency Tuner

Logical Pipeline Query Arrival Process Traffic Envelope
Structure
Online
‘ Sample
M\

Rq est Rate

Physical Pipeline
Configuration

Rescaled Pipeline

\‘\“ CPU

— _,CPU ,,”’
W)
W

TPU

[

Prediction Serving - Hardware

[0 Inference requires less memory - focus on compute

[0 Greater emphasis on latency instead of throughput
B Focus on small batch inference (batch size = 1)
B Opportunity to exploit pipeline parallelism
B Need high availability > esp. in mission critical settings
[0 Often runs multiple concurrent prediction tasks

B Cloud = Multitenancy - Performance isolation
B Edge - supporting multiple data streams

[0 Tolerate model compression and quantization
B As low as 4-bit activations and weights

[0 Bursty load
B Statistical multiplexing
B Use inference hardware for background training?

Machine Learning Lifecycle

Model Development

Data Cleaning &
Collection Visualization

Ir'.l $
- Training & « Feature Eng. &

Validation Model Design
Offline
Training
Data
Data

Scientist A

Training
ol
@)
o_\.—)
mmu@m@m

Training Pipelines

Trained
Models

Inference

Prediction Service

- B:)__’ 3:)_\ Query .=

Logic e | ———
Prediction ——

- B:). 4 End User
Application

r—)
Live I- Validation Feedback '
Data

Data

Engineer‘

Data

Engineer‘

Model Development

Data Cleaning &

— Collection Visualization
Ir‘i - 1 4
Training & . Feature Eng. &

Validation Model Design
Offline

Training
Data

Data

Scientist A

Training

P,
o_\.— -
mmu@m@m

Training Pipelines

-t

Trained
Models

Inference

Prediction Service

- Bi)_- B:)_\ Query

Logic ——
- E : y Prediction

Live I- Validation , Feedback '
Data

Data

Engineer‘

Data

Engineer‘

Securitye

———
———
——

End User
Application

Protect the data, the model, and the query

High-Value Data is Sensitive Models capture value in data
«a» ° Medical Info. » Core Asset

 Home video « “Contain”

* Finance the data

| |

Queries can be as sensitive as the data

91

Qur recent work In secure ML

O p d q L& | Oblivious Spark H e ‘ en Coopetitive Learning
SGX Using Cryptographic
INsDI'17] | OVETr S&P'19] | priritives
SQL ML | | Graph pargmz
Ix Opaque =
query optimization
(o-fiiter) Co-groupby) (o-join) part:.:m ‘—’? °‘.’§a"rit.'§'gve partgtm
Catalyst
Spark Execution

Security and Hardware

[0 Improved Access to Data
B User willing to share data with models but not companies (people)
B Differential Privacy can increase data sharing incentives

[0 Better isolation of co-tenant models on hardware accelerators

[0 Coopetitive Learning: Secure multiparty computation for ML

B Example: Competing banks collaborate to construct a shared fraud model
without sharing data.

[0 Models have access to more sensitive inputs
B Example: Alexa could see where you are when asking to turn on a light.

93

Conclusion

History: Al and Computer Systems have Co-evolved
Feedback Cycle: Hardware, Abstractions, and Data
ML is many Applications: Machine Learning Lifecycle
B Model Development: Exploration

B /raining: Scale and Composition
B [nference: Cloud - Edge Spectrum

Security: Opportunity for hardware innovation in Al

Thank you!

